

CXD2314R

9-bit 20MSPS Video A/D Converter

Description

The CXD2314R is a 9-bit CMOS A/D converter for video applications. This IC is ideally suited for the A/D conversion of video signals in TVs, VCRs, camcorders, etc.

Features

- Resolution: 9-bit ±0.5 LSB (D.L.E.)
- Maximum sampling frequency: 20MSPS
- Low power consumption: 130mW (at 20MSPS typ.) (Not including reference current)
- TTL compatible input
- Tri-state TTL compatible output (DVpb = 3.3V)
- Low input capacitance
- Reference impedance: 280Ω (typ.)

Absolute Maximum Ratings (Ta = 25°C)

 Supply voltage 	Vod	7	V
 Reference voltage 	VRT, VRB	VDD+0.5 to Vss-0.5	V
 Input voltage (analog) 	Vin	VDD+0.5 to Vss-0.5	V
 Input voltage (digital) 	ViH, Vi∟	VDD+0.5 to Vss0.5	V
 Output voltage (digital) 	Voh, Vol	VDD+0.5 to Vss-0.5	V
 Storage temperature 	Tstg	–55 to +150	°C

Recommended Operating Conditions

AVDD, AVSS	5.0±0.25	V
DVDD, DVss	3.0 to 5.25	V
DVss—AVss	0 to 100	mV
VRB	More than 1.8	V
VRT	to AVpp-0.4	V
Vin	More than 1.8Vp-p	
TPw1	25 (min.)	ns
TpwO	25 (min.)	ns
rature		
Topr	-20 to +75	°C
	DVod, DVss DVss—AVss VRB VRT Vin TPw1 TPw0 rature	DVob, DVss 3.0 to 5.25 DVss—AVss 0 to 100 VRB More than 1.8 VRT to AVbb—0.4 Vin More than 1.8Vp-p TPw1 25 (min.) TPw0 25 (min.)

Structure Silicon gate CMOS IC

Block Diagram

Pin Configuration

.

Pin Description

Pin No	Symbol	Equivalent circuit	Description
2 to 5 8 to 12	D0 to D8	DVoD DVoD DVSS 777	D0 (LSB) to D8 (MSB) output.
13	то		Test pin. TS = High: High impedance state
7, 45	DVDD		Digital Vod.
6, 16, 48	DVss		Digital Vss.
27, 28, 36, 43, 44	AVss		Analog Vss.
17	SEL		Calibration input pulse select after completion of the startup calibration. High : Internal pulse generation Low : External input
22	CLK		Clock pin.
41	CAL		Calibration pulse input.
15	RESET		Calibration circuit reset and startup calibration restart.

-3-

···· ··· ··· ··· ···· ······

í

Pin No.	Symbol	Equivalent circuit	Description
14	TIN	、 、	Test signal input. Normally fixed to AVob or AVss.
29, 30	VRT	AVDD (29) (30) AVss V	Reference top.
34, 35	VRB		Reference bottom.
38	AT		Test signal output. TS = High: High impedance state
42	TS		Test signal input. Normally fixed to AVDD.
37	TSTR		Test signal input. Normally fixed to AVss.
23	ŌĒ		D0 to D8 output enable. Low : Output state High : High impedance state
24	ĈĒ		Chip enable. Low : Active state High : Standby state

-4-

1	Pin No.	Symbol	Equivalent circuit	Description
	19	TESTMODE		Test mode. High : Output state Low : Output fixed
	20	LINV		Output inversion. High : D0 to D7 are inverted and output.
	21	ΜΙΝΥ		Output inversion. High : D8 is inverted and output.
	18, 25, 26	AVDD		Analog Vod.
ŀ	39	VIN	AVDD 39 AVSS V	Analog input.

-5-

Digital Output

The following table shows the correlation between the analog input voltage and the digital output code (TESTMODE=1, LINV, MINV=0)

Input signal voltage	Step	Digital output code MSB LSB
VRT	0	111111111
	255 256	1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
VRB	511	000000000

The following table shows the output state for the combination of TESTMODE, LINV, and MINV states.

LINV	MINV	D0	D1	D2	D3	D4	D5 ;	D6	D7	D8
0	0	P.	P	Р	Ρ	Ρ	Р	Р	Р	P
1	0	Ν	N	Ν	Ν	Ν	Ν	N	N	P
0	1	Р	Р	Ρ	P	Ρ	Р	Р	Р	N
1	1	Ν	Ν	Ν	N	N	Ν	N	N	N
0	0	0	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	0	1	0	0
0	1	0	1	0	1	0	1	0	1	1
1	1	1	0	1	0	1	0	1	0	1
	LINV 0 1 0 1 0 1 0	LINV MINV 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1	0 0 P 1 0 N 0 1 P 1 1 N 0 0 0 1 0 1	0 0 P P 1 0 N N 0 1 P P 1 1 N N 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0	0 0 P P P 1 0 N N N 0 1 P P P 1 1 N N N 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 0 P P P P P 1 0 N N N N N 0 1 P P P P P 1 1 N N N N 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 P O	0 0 P O 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 P	0 0 P

P: Forward-phase output N: Inverted output

				= 50, 0000 = 5.30,			· ·	
ltem		Symbol		onditions	Min.	Тур.	Max.	Unit
Max. conversion ra	ate	Fc max	Fін = 1.0kHz		20			MODE
Min. conversion ra	ite	Fc min	triangular wave input				0.5	MSPS
Supply Ar	nalog	IADD	Fוא = 1.0kH	Z	20	27	34	
current Di	igital	IDoo	triangular w	ave input		3.0	5.0	mA
Standby Ar	nalog	IAst	$\overline{CE} = High$	i			1.0	1
current Di	igital	IDst					1.0	μA
Deference nin eur		IRT			5.0	7.0	11.0	<u> </u>
Reference pin curr	ent	IRB			11.0	-7.0	-5.0	m <u>A</u>
Analog input band		BW	–1dB			70		MHz
Analog input capad	citance	CIN				9		pF
Reference resistar (VRT-VRB)		RREF			180	280	380	Ω
Offset voltage		Еот	measured v		40	90	140	
Unset voitage		Еов	EOB=actual theoretical v	measured value- alue	-120	70	-20	mV
Startup calibration	start	VCAL1	AVDD-AVs	S		2.5		
voltage		VCAL2	CAL2 VRT-VRB			1.0	·	V
Digital input voltage	A	Vін	AVDD = 4.75	W to 5.25V	2.3		······	V
	~	ViL					0.8	V
Analog input current		Ан	$V_{IN} = 4V$			40	50	
		ÁIL	$V_{IN} = 2V$		-50	-40		μA
Digital input curren	+	Ін	DVod = max	VIH = DVDD			5	
	· c	l IL.		VIL = 0V		·······	5	μA
Digital output curre	unt	Іон	OE = AVss	Voн = DVdd0.5V	3.5		·	
		lol	DVpp = min	Vol = 0.4V	3.5		·····	mA
Digital output curre	unt	Іогн	OE = AVDD	Voh = DVdd			1	
Digital Output curre	att	lozl	DVod = max	Vol = 0V			1	μA
Tri-state output dis	able time	tpez	Clock not synchronized for active high impedance		20	25	30	ns
Tri-state output ena	able time	tpze	Clock not synchronized for high impedance \rightarrow active		10	15	20	ns
Integral non-lineari	ty error	Eι				±0.5	±1.0	1.00
Differential non-linea	arity error	ED				±0.3	±0.5	LSB
Differential gain err	or	DG	NTSC 40 IRE mod			1.0		%
Differential phase e	error	DP	ramp, Fc = 14.3MSPS			0.3		deg
Output data delay		tol	CL = 20pF		8	13	18	ns
Sampling delay		tsн			4	6	8	
ownphing delay		tsL			2	4	6	ns

Electrical Characteristics (Fc = 20MSPS, AVDD = 5V, DVDD = 3.3V, VRB = 2.0V, VRT = 4.0V, Ta = 25°C)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	
		Fin = 100kHz		53			
		Fin = 500kHz		52			
SNR	SNR	Fin = 1MHz		53			
		Fin = 3MHz		52		dB	
		Fin = 7MHz		48			
		FIN = 10MHz		44			
		FIN = 100kHz	· · · · · ·	69			
		Fin = 500kHz		68			
SFDR	SFDR	Fin = 1MHz		68		-	
	0.011	Fin = 3MHz		62		dB	
		Fin ≃ 7MHz		56			
		Fin = 10MHz		45			

Application Circuit 1. Startup calibration + internal auto calibration

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

--8---

Application Circuit 2. Startup calibration + external sync calibration

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

-9-

Application Circuit 3. Only startup calibration

(Less than supply voltage fluctuation range of AVDD = ± 100 mV and reference voltage fluctuation range of IVRT-VRBI = 200mV)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

-10-

1. Calibration Function

In order to achieve superior linearity, the CXD2312R has a built-in calibration circuit and a calibration pulse auto generation circuit which is used to execute a calibration circuit. Fig. 1 shows a block diagram of the calibration pulse generation circuit.

Fig. 1. Calibration Pulse Generation Circuit

(1) Startup Calibration Function

Over 600 calibration pulses are needed to complete the initial calibration process when the power is first supplied to the IC. The startup calibration function automatically generates these pulses internally and completes the initial calibration process.

The following five conditions must be satisfied to initiate the startup calibration function.

- a) The voltage between AVob and AVss is approximately 2.5V or more.
- b) The voltage between VRT and VRB is approximately 1V or more.
- c) The RESET pin (Pin 15) must is high.
- d) The CE pin (Pin 24) must is low.
- e) Condition b is met after condition a.

Once all five of these conditions have been met, the calibration pulses are generated. The pulses are generated by counting 16 main clock cycles on a 14-bit counter and closing the gate when the carry-out occurs. Therefore, the time required for startup calibration after the above five conditions have been met is determined by the following formula:

Startup calibration time = main clock cycle x 16 x 16,384

For example, if the main clock frequency is 14.3MHz, the time required for startup calibration is 18ms.

-11-

(2) Auto Calibration Pulse Generation Function

After startup calibration is completed, this function periodically generates calibration pulses so that calibration can be performed constantly without any need for input of calibration pulses from an external source. This function counts 16 main clock cycles on a 24-bit counter and uses the carry-out as the calibration pulse. The cycle of the calibration pulse generated in this fashion is as follows:

Internal calibration pulse generation cycle = main clock cycle x 16 x 16,777,216

Therefore, if the main clock frequency is 14.3MHz, the calibration pulse cycle is approximately 19 seconds; since calibration is performed once every seven pulses, the calibration cycle is approximately 130 seconds. In order to use this function, the SEL pin (Pin 17) must be high.

Note that this function cannot be used if fixing the lower bits in the calibration operation as described below will cause problems because this function is executed asynchronously without regard to the input signals.

(3) External Calibration Pulse Input Function

If the auto calibration function cannot be used, calibration can be performed in synchronization with the input signals when a calibration pulse is input from the CAL pin (Pin 41) by setting the SEL pin (Pin 17) low.

Calibration starts when the falling edge of the pulse input to the CAL pin (Pin 41) is detected. Because the lower comparator is occupied for four clock cycles at this point, the previous lower data is held for four clock cycles after seven clock cycles since the rising edge of the clock cycle in which the falling edge of CAL was detected. Calibration can be performed outside of video intervals by using the sync signal, etc., to input the CAL signal. An example of this is shown below.

-12-

[2] Inputting CAL every V-sync

It is also possible to use only the startup calibration function by leaving the SEL pin (Pin 17) low and fixing the CAL pin (Pin 41) either high or low. Note that this method requires restriction of the fluctuation range of the supply voltage and the reference voltage.

(4) Re-initiating the Startup Calibration Function

The startup calibration function can be re-initiated after the power and reference voltage are supplied by using the CE pin (Pin 24) and the RESET pin (Pin 15). Particularly in cases where the riseup characteristics of the power supply and the reference voltage are unstable, it is possible to initiate startup calibration properly by connecting a CR and delaying startup until after power supply riseup.

Fig. 3. Initiation of the Startup Calibration Function Using the RESET pin

2. Power supply

To prevent the influence of noise, connect the power supply to a 0.1µF by-pass capacitor as near the device as possible.

3. DVDD

Either a 3.3V or 5.0V digital power supply can be used. Compared to the 5.0V power supply, the 3.3V power supply generates a decreased amount of radiation noise but offers a decreased drive capacity. These two power supplies do not virtually differ in static and dynamic characteristics. Further, the High output level rises up to DVop.

4. Reference input

The voltage to be supplied to the reference pins must be driven by a buffer having a 10mA or more drive capacity. For supplied voltage stabilization, connect the buffer to a 0.1μ F by-pass capacitor as near the pins as possible.

5. Latch-up

Ensure that the AVpp and DVpp pins share the same power supply on a board to prevent latch-up which may be caused by power ON time-lag.

6. Board

To obtain full-expected performance from this IC, be sure that the mounting board has a large ground pattern for lower impedance. It is recommended that the IC be mounted on a board without using a socket to evaluate its characteristics adequately.

Example of Representative Characteristics

Output data delay vs. Ambient temperature

-15-

Package Outline Ur

Unit : mm

48PIN LQFP(PLASTIC)

SONY CODE	LQFP-48P-L01
EIAJ CODE	*QFP048-P-0707-A
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.2 g

This data sheet has been made from recycled paper to help protect the environment.