SONY

Dual SPDT Low Power Switch

CXG1404XR

Description

The CXG1404XR is a low power dual SPDT switch for Rx applications. It can be used as a differential signal switch. The CXG1404XR has on-chip logic with single control reduces component counts and simplifies PCB layout by allowing direct connection of the switch to digital base band control lines with the CMOS logic levels.

The Sony GaAs junction gate pHEMT (JPHEMT) MMIC process is used for low insertion loss and high linearity.

(Applications: CDMA/GSM/UMTS handsets, Differential signal switch)

Features

♦ Low insertion loss: 0.30 dB (Typ.) Rx (746 to 960 MHz)

0.35 dB (Typ.) Rx (1710 to 2170 MHz) 0.40 dB (Typ.) Rx (2500 to 2690 MHz)

◆ Low voltage operation: VDD = 2.5 V

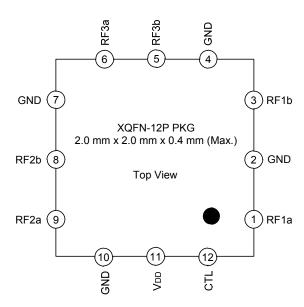
♦ On chip logic with single control

◆ Small package size: XQFN-12P (2.0 mm x 2.0 mm x 0.4 mm Max.)

◆ Lead-free and RoHS compliant

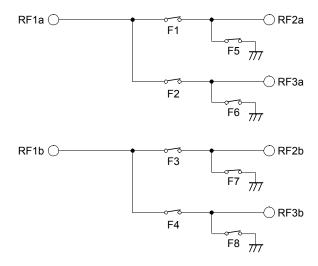
Structure

GaAs Junction Gate pHEMT (JPHEMT) MMIC Switch


Absolute Maximum Ratings

(Ta = 25 °C)

Bias voltage VDD 4 V
 Control voltage VCTL 4 V
 Input power max. 18 dBm
 Operating temperature -35 to +85 °C
 Storage temperature -65 to +150 °C


GaAs MMIC's are ESD sensitive device. Special handling precautions are required.

Pin Configuration

SONY

Block Diagram

Truth Table

State	Active path	CTL state	Switch state							
		CILSIALE	F1	F2	F3	F4	F5	F6	F7	F8
1	RF1a – RF2a, RF1b – RF2b	L	ON	OFF	ON	OFF	OFF	ON	OFF	ON
2	RF1a – RF3a, RF1b – RF3b	Н	OFF	ON	OFF	ON	ON	OFF	ON	OFF

DC Bias Condition

Parameter	Min.	Тур.	Max.	Unit
VDD	2.5	2.6	3.3	V
VCTL(H)	1.5	1.8	3.3	V
VCTL(L)	0	_	0.3	V

Target Specification

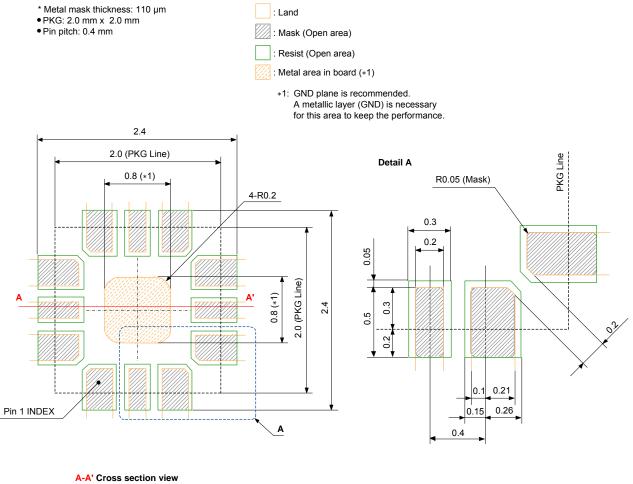
(VDD = 2.6 V, Ta = 25 °C)

Item	Symbol	Path	Condition	Min.	Тур.	Max.	Unit
	IL	DE1a DE2a DE2a	*1	_	0.30	0.45	
Insertion loss		RF1a – RF2a, RF3a RF1b – RF2b, RF3b	*2		0.35	0.50	dB
			*3		0.40	0.60	
Isolation	ISO	RF1a – RF2a, RF3a RF1b – RF2b, RF3b	746 to 960 MHz	25	28		
			1710 to 2170 MHz	21	24	_	dB
			2500 to 2690 MHz	19	22		
VSWR	VSWR	All ports in active paths	746 to 2690 MHz	-	_	1.40	_
Switching time	Ts		50 % Ctl to 90 % RF	_	3	5	μs
Control current	ICTL		VCTL = 1.80 V		7	20	μΑ
Supply current	IDD		VDD = 2.60 V	_	30	50	μA

Electrical Characteristics are measured with all RF ports terminated in 50 $\boldsymbol{\Omega}$

- *1 Pin = 10 dBm, 746 to 960 MHz
- *2 Pin = 10 dBm, 1710 to 2170 MHz
- *3 Pin = 10 dBm, 2500 to 2690 MHz

Recommended Circuit

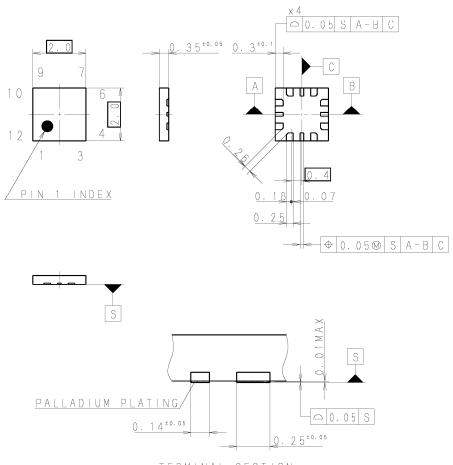



When using this IC, the following external components should be used:

Rctl: This resistor is used to improved ESD performance. 1 k Ω is recommended. CRF: This capacitor is used for RF De-coupling and must be used all application. Cbypass: This capacitor is used for DC line filtering. 100 pF is recommended.

PCB Layout Template

XQFN-12P-02 Macro drawing (Reference)



Package Outline

(Unit: mm)

12PIN XQFN (PLASTIC)

TERMINAL SECTION

Note:Terminal burr height 0.05mm MAX.

SONY COD	E XQFN-12P-02
JEITA COL	DE
JEDEC COL) E

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.0049

PART No. A P = 4 0 0 0 = 1 2 0 1 3	3 S	Rev. ()
' 11.08.30	REVISED	
PRODUCTION LINE	COMPILING DI SDT ENGIN	v. IEERING DIVISION
PKG CODE:XR-) 1 2 - D	_

Marking

MARKING C: GC

注1) B部はロット番号(Max3文字で通し記号)を配置する。

(規定文字数未満につき省略は省略規定に従う。	
製造年は下記2進法ビット方式により表示する。)	
a.部年コード(2進法ビット方式の1ビット目を表示)を配置する。	
b 部年コード(2進法ビット方式の2ビット目を表示)を配置する。	
c部年コード(2進法ビット方式の3ビット目を表示)を配置する。	
d 部年コード(2進法ビット方式の4ビット目を表示)を配置する。	
注2) C部は製品名(Max2文字)を配置する。	
(2文字を超える場合は製品名省略標示規定に従う。)	
<u>注3) マーク深さは、Max0.05mmの事。</u>	
< INSTRUCTIONS >	
_1) LOT NO. (MAX 3 CHARACTERS : SERIAL CODE) IN SECTION B.	
(FOLLOW RULES FOR ABBREVIATIONS.	
MANUFACTURING YEAR IS DISPLAYED BY FOLLOWING BYNARY BIT SYSTEM.)	
A YEAR CODE (THE 1ST BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN 1 DOT)	IN SECTION a
A YEAR CODE (THE 2ND BIT OF A BINARY SYSTEM BIT SYSTEM IS DISPLAYED IN 1 DOT)	IN SECTION b
	IN SECTION c
	IN SECTION d
2) TYPE NO. (MAX 2 CHARACTERS) IN SECTION C.	IN OCUITOR C
/ COD MODE THAN A CHARACTERS CALLOW DILES COD ADDREVIATIONS)	
(FOR MORE THAN 2 CHARACTERS FOLLOW RULES FOR ABBREVIATIONS.) 3) MARK DEPTH MAX 0.05 mm.	

DETAIL B

SONY CXG1404XR

Note

Sony reserves the right to change products and specifications without prior notice.

This information does not convey any license by any implication or otherwise under any patents or other right.

Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.