

CY2SSTV16859

13-Bit to 26-Bit Registered Buffer PC2700-/PC3200-Compliant

Features

- Differential clock inputs up to 280 MHz
- Supports LVTTL switching levels on the RESET# pin
- Output drivers have controlled edge rates, so no external resistors are required.
- Two KV ESD protection
- Latch-up performance exceeds 100 mA per JESD78, Class II
- 64-pin TSSOP/JEDEC package availability
- JEDEC specification supported

Description

D1

This 13-bit to 26-bit registered buffer is designed for 2.3V to 2.7 VDD operations.

All inputs are compatible with the JEDEC Standard for SSTL-2, except the LVCMOS reset (RESET#) input. All outputs are SSTL_2, Class II compatible.

The CY2SSTV16859 operates from a differential clock (CLK and CLK#) of frequency up to 280MHz. Data are registered at crossing of CLK going high and CLK# going low.

When RESET# is low, the differential input receivers are disabled, and undriven (floating) data and clock inputs are allowed. The LVCMOS RESET# input must always be held at a valid logic high or low level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET# must be held in the low state during power up.

In the DDR DIMM application, RESET# is completely asynchronous with respect to CLK# and CLK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register is cleared and the outputs are driven low quickly, relative to the time to disable the differential input receivers, thus ensuring no glitches on the output. However, when coming out of reset, the register becomes active quickly, relative to the time to enable the differential input receivers.

Pin Description

Pin	Name	Description
51	RESET#	Disable Clocking and Reset Latch
7,15,34,39,43,50,54,58,63	VSS	Ground
37,46,60	VDD	Supply Voltage
6,18,27,33,38,47,59,64	VDDQ	Supply Voltage, Quiet
45	VREF	Reference Voltage for Data Inputs D(1:13)
16,14,13,12,11,10,9,8,5,4,3,2,1	QA(1:13)	Data Outputs
32,31,30,29,28,25,24,23,22,21,20,19,17	QB(1:13)	Data Outputs
35,36,40,41,42,44,52,53,55,56,57,61,62	D(1:13)	Data Inputs
48,49	CLK, CLK#	Differential Clock Signals

Table 1. Function Table^[1,2,3]

	INPUTS				
RESET#	CLK	CLK#	D	Q	
Н	<u>↑</u>	\downarrow	L	L	
Н	<u>↑</u>	\downarrow	Н	Н	
Н	L or H	L or H	Х	Q ₀	
L	X or floating	X or floating	X or floating	L	

Notes:

H = High voltage level.
 L = Low voltage level.
 X = Don't care.

Absolute Maximum Conditions^[4,5]

Parameter	Description	Condition	Min.	Max.	Unit
V _{TERM} ^[6]	Terminal Voltage with respect to V _{SS}		-0.5	3.6	V
V _{TERM} ^[7]	Terminal Voltage with respect to V_{SS}		-0.5	V _{DD} + 0.5	V
T _{STG}	Storage Temperature		-65°	150°C	°C
I _{OUT}	DC Output Current		-50	50	mA
I _{IK}	Continuous Clamp Current	V_{I} <0 or V_{I} > V_{SS}	-50	50	mA
I _{OK}	Continuous Clamp Current	V_{O} <0 or V_{O} > V_{DD}	-50	50	mA
I _{dd} I _{SS}	Continuous Current through each $V_{DD,} V_{DDQ}$ or V_{SS}		-100	100	mA

Recommended Operating Conditions^[8]

Parameter	D	escription	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage		2.3	2.5	2.7	V
V _{DDQ}	Output supply voltage	PC1600,PC2100,PC2700	2.3	2.5	2.7	V
		PC3200	2.5	2.6	2.7	V
V _{REF}	Reference voltage	PC1600,PC2100,PC2700	1.15	1.25	1.35	V
	$(V_{REF} = V_{DDQ}/2)$	PC3200	1.25	1.3	1.35	V
V _{TT}	Termination voltage		V _{REF} – 40 mV	V _{REF}	V _{REF} + 40 mV	V
VI	Input voltage		0	-	V _{DD}	V
V _{IH}	AC Data Input high-le	vel voltage	V _{REF} + 310 mV	-	-	V
V _{IL}	AC Data Input low-lev	el voltage	-	-	V _{REF} – 310 mV	V
V _{IH}	DC Data Input high-le	vel voltage	V _{REF} + 150 mV	-	-	V
V _{IL}	DC Data Input low-lev	vel voltage	-	_	V _{REF} – 150 mV	V
VIH	RESET# Input high-le	vel voltage	1.7	_	-	V
V _{IL}	RESET# Input low-lev	vel voltage	-	_	0.7	V
VICR	CLK, CLK# Common-	mode input voltage range	0.97	_	1.53	V
V _{I(PP)}	CLK, CLK# Peak-to-p	360	-	-	mV	
I _{ОН}	High-level output curre	-	-	-20	mA	
I _{OL}	Low-level output curre	ent	-	_	20	mA
T _A	Operating free-air tem	perature	0	_	85	°C

DC Electrical Specifications

Parameter	Description	Condition	VDD	Min.	Typ. ^[9]	Max.	Unit	
V _{IK}	Clamp Voltage	I _I = -18 mA		2.3V	-	-	-1.2	V
V _{OH}	High level output	I _{OH} = -100 μA		2.3 to 2.7V	V _{DD} – 0.2	—	_	V
	voltage	I _{OH} = -16 mA		2.3V	1.95	-	-	V
V _{OL}	Low level output	I _{OL} = 100 μA		2.3 to 2.7V	_	-	0.2	V
	voltage	I _{OL} = 16 mA		2.3	_	-	0.35	V
l _l	All Inputs	$V_{I} = V_{DD} \text{ or } V_{SS}$		2.7V	_	-	± 5	μA
I _{DD}	Static Standby	RESET# = V _{SS}	$I_0 = 0$	2.7V	_	-	10	μA
	Static Operating	RESET# = V_{DD} , $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$		2.7	_	—	40.0	mΑ

Notes:

The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
 Stresses greater than those listed under Absolute Maximum Conditions may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
 V_{DD}/V_{DDQ} terminals.
 All terminals except V_{DD}.
 The RESET# input of the device must be held at V_{PD} or V_{PD} to ansure proper device exerction.

The RESET# input of the device must be held at V_{DD} or V_{SS} to ensure proper device operation. 8.

9. All typical values are measured at $T_{AMB} = 25^{\circ}C$

DC Electrical Specifications (continued)

Parameter	Description	Condition		VDD	Min.	Typ. ^[9]	Max.	Unit
I _{DDD}	Dynamic operating – clock only	$\label{eq:RESET} \begin{array}{l} RESET\# = V_{DD}, V_{I} = V_{IH(AC)} \text{or} V_{IL(AC),} \\ CLK \text{and} CLK\# \text{switching} 50\% \text{duty} \\ cycle \end{array}$	I _O = 0	2.7V	_	30.0	_	µA/ clock MHz
	Dynamic operating – per each data input	RESET# = V_{DD} , $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$, CLK and CLK# switching 50% duty cycle. One data input switching at half clock frequency, 50% duty cycles.		2.7	-	15.0	-	µA/ clock MHz /data input
r _{OH}	Output high	I _{OH} = -20 mA		2.3 to 2.7V	7	-	20	Ω
r _{OL}	Output low	I _{OL} = 20 mA		2.3 to 2.7V	7	-	20	Ω
$r_{O(\Delta)}$	∣r _{OH} – r _{OL} ∣ each separate bit	$I_{O} = 20 \text{ mA}, T_{A} = 25^{\circ}\text{C}$		2.5V	-	-	4	Ω
C _i	Data Inputs	V _I = V _{REF} <u>+</u> 310 mV		2.5	2.5	—	3.5	pF
	CLK and CLK#	V _{ICR} = 1.25V, V _{I(PP)} = 360 mV		2.5	2.5	-	3.5	pF
	RESET#	$V_{I} = V_{DD} \text{ or } V_{SS}$		2.5	2.5	—	3.5	pF

AC Electrical Specifications

			V _{DD} = 2.5	V± 0.2V	
Parameter	Description	Description			
f _{clock}	Clock Frequency		_	280	MHz
t _w	Pulse duration, CLK, CLK# high or low		2.0	-	ns
t _{act}	Differential inputs active time (data inputs must be held le high).	ow after RESET# is taken	_	22	ns
t _{inact}	Differential inputs inactive time (data and clock inputs mu (not floating) after RESET# is taken low).	ust be held at valid levels	-	22	ns
t _{su}	Set-up time, fast slew rate ^[10, 12] Da	ata before CLK \uparrow , CLK# \downarrow	0.75	-	ns
	Set-up time, slow slew rate ^[11, 12]		0.9	-	ns
t _h	Hold time, fast slew rate ^[10, 12] Da	ata after CLK ↑, CLK#↓	0.75	-	ns
	Hold time, slow slew rate ^[11, 12]		0.9	_	ns

Table 2. Switching Characteristics Over Recommended Operating Conditions^[13]

Parameter	From (Input)	n (Input) To (Output)		$V_{DD} = 2.5V \pm 0.2V$		
			Min.	Max.		
f _{max}			280	-	MHz	
t _{PHL}	RESET#	Q		5	ns	
t _{PD}	CLK and CLK#	Q	1.1	2.8	ns	

Notes:

For data signal input slew rate ≥ 1 V/ns.
 For data signal input slew rate ≥ 1 V/ns.
 CLK and CLK# signals input slew rates are ≥ 1 V/ns.
 See test circuits and waveforms. TA = 0°C to +85°C.

Output Buffer Characteristics

Table 3. Output Buffer Voltage vs. Current(V/I) Characteristics

	Pull-I	Down	Pull-Up		
Voltage (V)	Min. I(mA)	Max. I(mA)	Min. I(mA)	Max. I(mA)	
0	0	0	-55	-162	
0.1	6	13	-55	-161	
0.2	10	25	-54	-160	
0.3	15	38	-54	-159	
0.4	19	49	-54	-157	
0.5	23	60	-54	-156	
0.6	27	71	-53	-154	
0.7	30	81	-53	-152	
0.8	34	91	-53	-149	
0.9	36	100	-52	-146	
1.0	38	108	-52	-143	
1.1	40	115	-52	-140	
1.2	42	123	-51	-137	
1.3	43	130	-50	-134	
1.4	44	137	-48	-130	
1.5	44	144	-46	-125	
1.6	45	150	-44	-120	
1.7	45	158	-40	-112	
1.8	45	165	-38	-104	
1.9	45	172	-35	-96	
2.0	45	179	-31	-83	
2.1	46	185	-28	-72	
2.2	46	191	-23	-60	
2.3	46	196	–19	-49	
2.4	46	201	-15	-38	
2.5	46	206	-10	-27	
2.6	46	211	-5	-15	
2.7	46	216	0	0	

 Table 4. Output Buffer Slew-Rate Characteristics

dV/dt	Min.	Max.
Rise	0.85 V/ns	15.9 V/ns
Fall	1.00 V/ns	18.9 V/ns

Parameter Measurement Information^[14]

 $V_{DD} = 2.5V \pm 0.2V$

Timing Diagrams

Figure 1. Load Circuit^[15]

Figure 2. Voltage Waveforms Set-up and Hold Times

Figure 4. Voltage Waveforms Propagation Delay Times

Ordering Information

Part Number	Package Type	Product Flow
CY2SSTV16859ZI	64-pin TSSOP	Industrial, –40° to 85°C
CY2SSTV16859ZIT	64-pin TSSOP – Tape and Reel	Industrial, –40° to 85°C
CY2SSTV16859ZC	64-pin TSSOP	Commercial, 0° to 70°C
CY2SSTV16859ZCT	64-pin TSSOP	Commercial, 0° to 70°C

Notes:

All input pulses are supplied by generators having the following characteristics: PRR < 10 MHz, ZO = 50-ohm output slew rate = 1 V/ns ±20% (unless otherwise specified).
 C_L includes probe and jig capacitance.

16. the outputs are measured one at a time with one transition per measurement.

17. $V_{TT} = V_{REF} = V_{DDQ}/2.$

 $\label{eq:linear} \begin{array}{l} {}^{**}V_{IH} = V_{REF} + 350 \text{ mV} (\text{AC voltage levels}). \\ {}^{***}V_{IL} = V_{REF} - 350 \text{ mV} (\text{AC voltage levels}). \end{array}$ 18.

19.

Package Drawing and Dimension

64-lead Thin Shrunk Small Outline Package (6 mm x 17 mm) Z64

All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

Document Title:CY2SSTV16859 13-Bit to 26-Bit Registered Buffer PC2700-/PC3200-Compliant Document Number: 38-07463				
REV.	ECN No.	lssue Date	Orig. of Change	Description of Change
**	123052	04/14/03	RGL	New Data Sheet
*A	126277	04/16/02	KKV	Added commercial information to ordering information table, was not added in previous rev **. Added to title "PC2700-/PC3200- Compliant"