

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL At +25°C V_{R8} = +1.0V, V_{ELA} = V_{EED} = -5.2V, unless otherwise noted

				DAC600A			DAC600B	N	
PARAMETER	CONDITIONS	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DIGITAL INPUTS									
Logic	12 Paraliel Input Lines, ECL								
Resolution ECL Logic Input Levels: V _{IL}		Full	1.48	-1.95	12 2				Bits V
ECL Logic input Levels: VIL	Logic "0"	Full	1.48	-1.95	2		·		μA
-iL V ₈₁	Logic "1"	Full	-1.1	-0.75	ō	•	•	•	v v
L,		Full			200			•	μA
DIGITAL TIMING							_		
Input Data Rate	and the second	Full	DC		256	•		•	MHz
CLK Pulse Width High or Low		Full	1.95			•			ns
Set-up Time		Full	1.5	1.0			:		ps
Hold Time (Referred to CLK) Propagation Delay		Full ·	1.9	1.7 2					ns
ANALOG OUTPUT				۷		<u> </u>			ns
Bipolar Output Current	R, = 0Ω	Full	19	20	21				mA
Output Resistance	n _L = 082	Full	47.5	50	52.5	49	•	51	Ω
Output Capacitance		Full	47.5	15	VE.V	-13	•	.	pF
CONTROL AMPLIFIER									
Input Resistance		Fu#		800			•		Ω
Full Power Bandwidth	–3dB	Full		10			•		MHz
Offset		+25°C		0	±1		0	±0.5	mV
Input Reference Range		Full	100mV		±1.25	•		· ·	V
TRANSFER CHARACTERISTICS									
Integral Linearity Error(1): VOUT NOT	Best Fit Straight Line	+25°C		±0.012	±0.024		±0.006	±0.012	%FSR
VOUTNOT	5 - C	Full +25°C		±0.024	±0.036 ±0.1		±0.012	±0.024 ±0.1	%FSR %FSR
Vout Differential Linearity Error ⁽¹⁾ : Vout NOT		+25°C +25°C			±0.1 ±0.024			±0.1 ±0.012	%FSR %FSR
Vout Not		Full			±0.036			±0.024	%FSR
Vour		+25°C			±0.1%			±0.1%	%FSR
12-Bit Monotonicity		+25°C	(Guarantee	d		Guarantee		
		Full		Typical		· · · · ·	Guarantee		
Output Offset Current: Vour Nor	Bits 1-12 HIGH	+25°C		75	150		50	100	μΑ
Vout NOT Gain Error ⁽²⁾		Full +25°C		57 ±0.5	150 ±1.5		50 ±0.5	100 ±1.0	μA %
		Full		±0.5 ±1.3	±1.5 ±2.0		±0.5	±1.0 ±2.0	%
Output Leakage Current	VREF = 0V, Bits 1-12 LOW, VOUT NOT	+25°C		10	75		5	50	μÂ
TIME DOMAIN PERFORMANCE									
Glitch Energy	Major Carry	+25°C		5.6			•		pVs
Fall Time	90% to 10%	+25°C		510			•		ps
Rise Time	10% to 90%	+25°C		770			•		ps
Settling Time ⁽³⁾ ±0.1% FSR	Major Carry, 1 LSB Change	Full		4					
±0.1% FSR ±0.024% FSR	Major Carry, 7 LSB Change	Full Full		4 15					ns ns
DYNAMIC PERFORMANCE									115
Spurious Free Dynamic Range (4)									
$t_0 = 1 \text{MHz}$	f _{cLOCK} = 50MHz	+25°C		74		70	77		dBFS ⁽³⁾
$f_0 = 10MHz$	f = 50MHz	+25°C		71		65	73		dBFS
$f_0 = 1 MHz$	for our = 100MHz	+25°C		72		70	75		dBFS
f _o = 10MHz	$f_{ct,OCK} = 100 MHz$	+25°C		71		66	70		dBFS
$f_0 = 20MHz$	f _{cLOCK} = 100MHz	+25°C		63		59	62 70		dBFS
f _o = 10MHz f _o = 20MHz	f _{CLOCK} = 200MHz f _{CLOCK} = 200MHz	+25°C +25°C		66 58		66 64	70 67		dBFS dBFS
$f_0 = 50MHz$	f _{cLOCK} = 200MHz	+25℃ +25℃		58		50	55		dBFS
Output Noise	Bits 1-12 HIGH	+25°C		10.6			•		nV/√Hz
POWER SUPPLIES									
Supply Voltages: VEE		Full	4.5	-5.2	-5.5	•	•	•	v
Supply Currents: I	Pins 33 and 34	Full	30	46	60	•	• *	•	mA
EED	Pins 5 and 55	Full	110	150	190	•	•	•	mA
Power Consumption	Operating	Full		900mW	1.3		•	•	w
TEMPERATURE RANGE									
Specification: DAC600AN, BN	Ambient	Full	-40		+85			•	°C
θ_{μ}				30					°C/W

VMEASURED (FS) -VIDEAL (FS) X 100 VIDEAL (FS) NOTES: (1) Linearity tests are measured into a virtual ground (op amp). (2) Gain error in % is calculated by: GE (%) = (3) Settling time is influenced by the load due to fast edge speeds. Use good transmission line techniques for best results. (4) Spurious free dynamic range is measured from the fundamental frequency to any harmonic or non-harm

nic spurs within the bandw "/2_c, uniess

3,18

Burr-Brown IC Data Book—Data Conversion Products

Or, Call Customer Service at 1-800-548-6132 (USA Only)

ORDERING INFORMATION

MODEL	DESCRIPTION	TEMPERATURE RANGE (AMBIENT)
DAC600AN, BN	68-Pin Plastic QUAD	40°C to +85°C

ABSOLUTE MAXIMUM RATINGS

V _{EEA}	0.3 to –7
V _{EEA}	0.3 to -7
Logic Inputs	0 to -5.5V
Reference Input Voltage	0 to +1.25V
Reference Input Current	0 to 1.56mA
Case Temperature	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature	55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Stresses above these ratings may permanently dama	age the device.

ELECTROSTATIC X **DISCHARGE SENSITIVITY**

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that this integrated circuit be handled and stored using appropriate ESD protection methods.

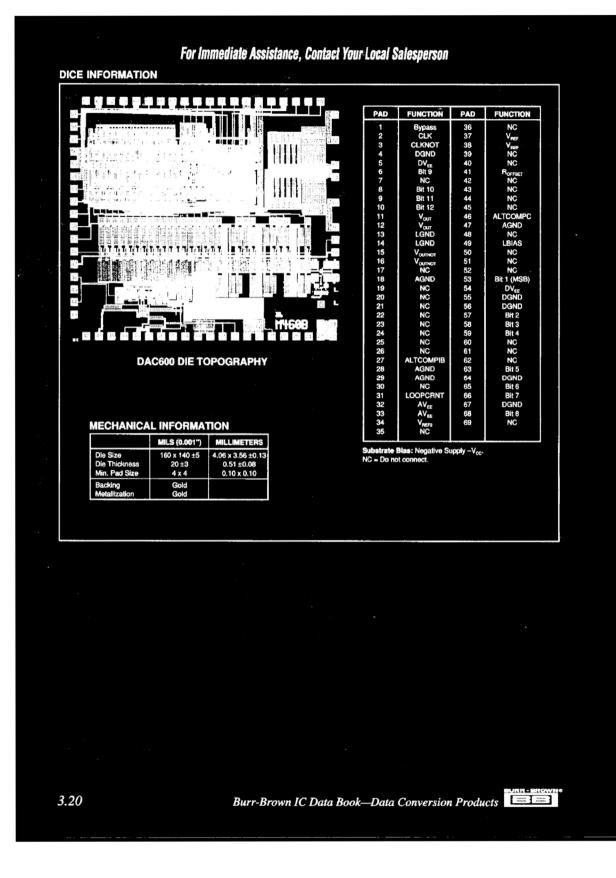
PACKAGE INFORMATION PACKAGE DRAW MODEL PACKAGE NUM BER DAC600AN, BN 68-Pin Plastic QUAD 312-1 NOTE: (1) For detailed drawing and dim tion table, please see end of da

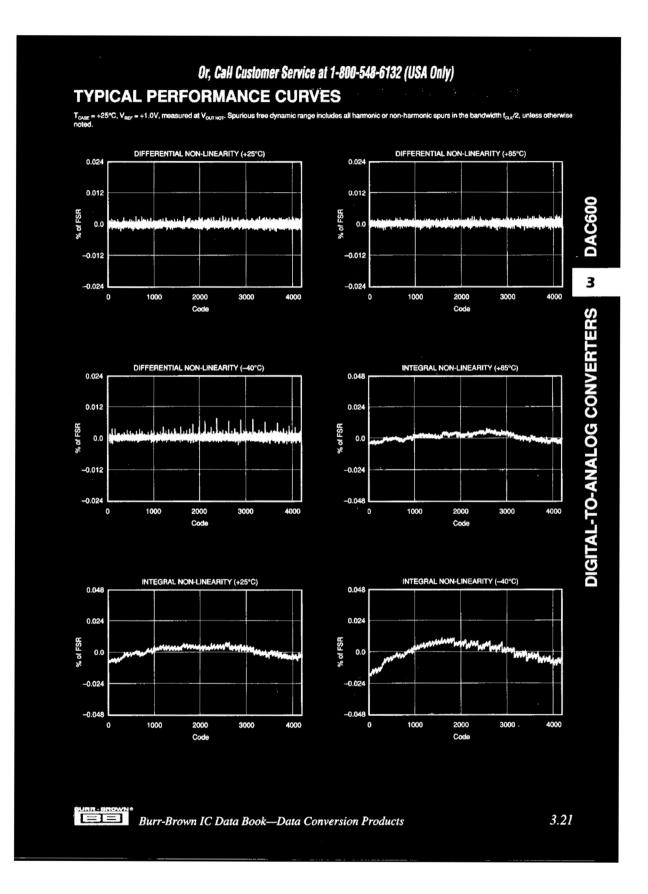
DAC600

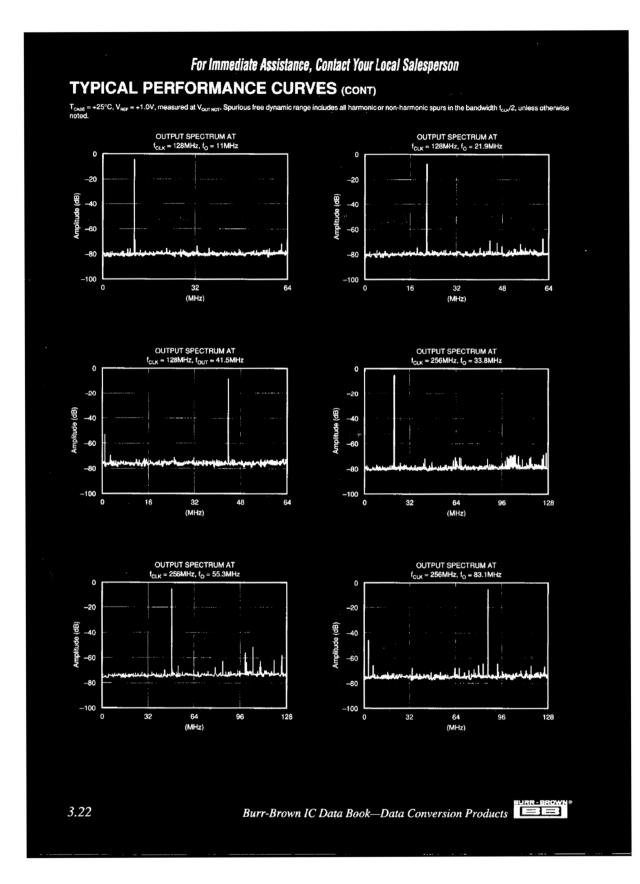
3

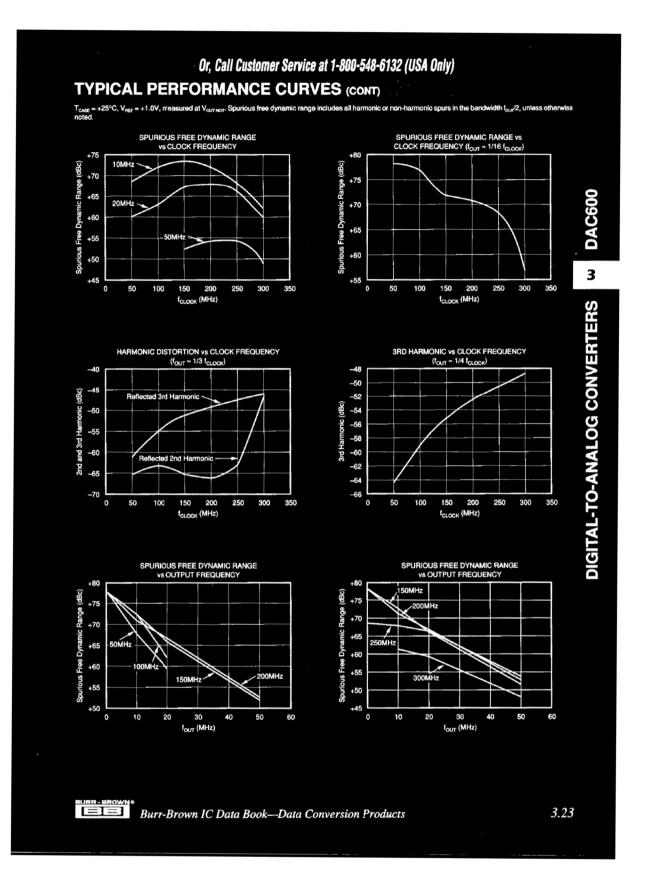
sheet, or Appendix D of Burr-Brown IC Data Book.

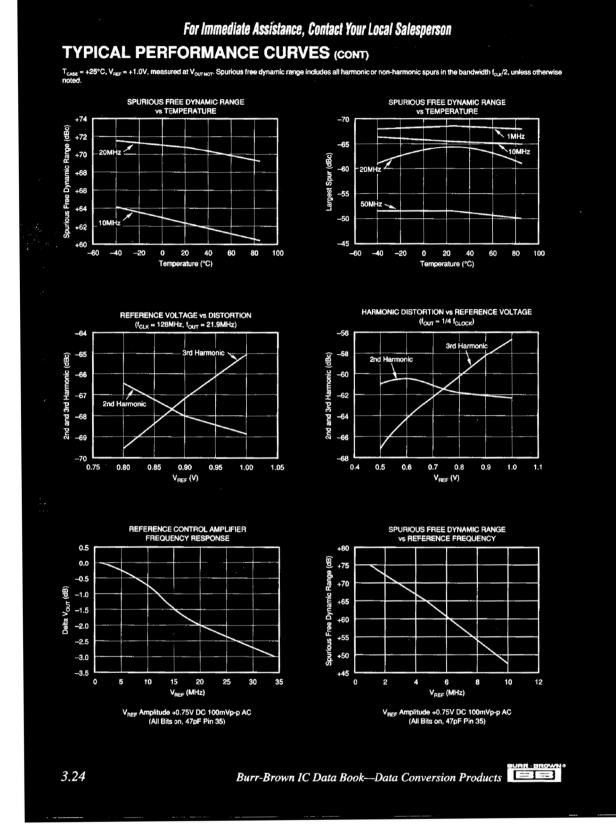
PIN DEFINITIONS


PINIDEF						
PIN NO	DESIGNATION	DESCRIPTION	PIN NO	DESIGNATION	DESCRIPTION	()
1	BYPASS	Disables Latching of Data	35	V _{REF2} NC	Analog Reference Voltage Center Tap	CONVERTERS
2	CLK	CLOCK	36	NC		TT
3	CLKNOT	CLOCKNOT	37	NC		
4	DGND	Digital Ground	38	VREF	Analog Reference Voltage	
5	DV _{ee} ⁽¹⁾	-5.2V Supply	39		Analog Reference Voltage	1.00
6	Bit 9		40			11
7	Bit 10	• ·	41	NC		
8	Bit 11		42	R _{OFFSET} NC	Offset Compensation	
9	Bit 12	LSB	43			
10	NC		44	BYPASS	0.1µF Bypass to Ground	Ö
11	NC		45	NC		S
12	NC		46	NC		
13	Vour	DAC Output	47	ALTCOMPC	Control Amp PTAT Reference Compensation ⁽²⁾	6
14		DAC Output	48	AGND	Analog Signal Ground	Õ
15	Land	Ladder Ground	49	NĆ		\sim
16	LGND	Ladder Ground	50	LBIAS	Ladder Bias Alternate Compensation ⁽²⁾	
17		DAC Output Complement	51	NC		
18	VOUTNOT	DAC Output Complement	52	NC		~
19	NC		53	NC		4
20	AGND	Analog Ground	54	Bit 1	MSB	
21	NC		55	DV _{EE} DGND	Digital –5.2V Supply	Ó
22	NC		56		Digital Signal Ground	Ľ
23	NC		57	DGND	Digital Signal Ground	
24	NC		58	Bit 2		
25	NC		59	Bit 3		4
26	BYPASS	0.1µF Bypass to Ground	60	Bit 4		
27	NC		61	NC		DIGITAL-TO-ANALOG
28	ALTCOMPIB	PTAT-IB Reference Compensation ⁽²⁾	62	Bit 5		5
29	AGND	Analog Ground	63	DGND	Digital Ground	
30	AGND	Analog Ground	64	Bit 6		
31	NC		65	Bit 7		
32	LOOPCRNT	DAC Reference Alt. Loop Current	66	DGND	Digital Ground	
		(Connect to AGND)	67	Bit 8		
33	Veen	-5.2V Supply	68	NC		
34	Veen	-5.2V Supply				


NC: no connect NOTE: (1) Pins 5 and 55 typically draw 150mA of current. Pins 33 and 34 combined typically draw 46mA. (2) Connect bypass capacitor to V_{ee}.


The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.


BURR-BROWN® BURR-BROWN IC Data Book—Data Conversion Products


3.19

Or, Call Customer Service at 1-800-548-6132 (USA Only)

THEORY OF OPERATION

The DAC600 employs a familiar architecture where input bits switch on the appropriate current sources (Figure 1.) Bits 1-4 are decoded into 15 segments after the first set of latches. The edge triggered master-slave latches are driven by an internal clock buffer. Current sources for bits 5 and 6 are scaled down in binary fashion. These current sources are switched directly to the output of the R-2R ladder. Bits 7-12 are properly scaled and fed to the laser trimmed R-2R ladder. Decoding of bits 1-4 into 15 segments and synchronizing the data with a master/slave register reduces glitching. If the BYPASS input is low, data is transferred to the output on the positive going edge of the clock. If BYPASS is high, data is transferred to the output regardless of clock state. All digital inputs are ECL compatible.

The output current sees 50Ω of output impedance from the equivalent resistance of a R-2R ladder. With all of the current sources off, the output voltage is at 0V. With all current sources on (-20mA), the output voltage is at -1V. Transfer function information is given in Tables I and II.

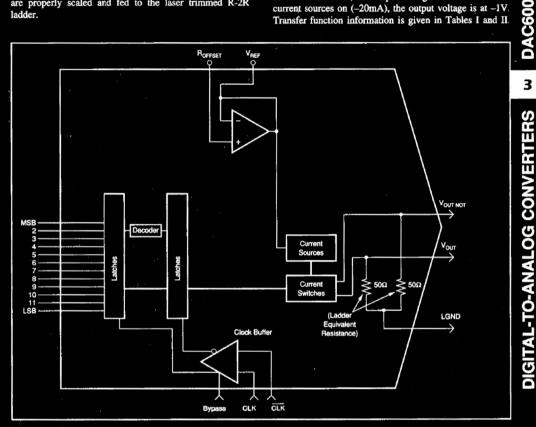


FIGURE 1. Basic DAC600 Architecture.

				INPUT BITS OUTPUT VOLTAGES									
1	2	3	4	5	6	7	8	9	10	11	12	Vour	NV _{out}
0	0	0	0	0	0	C	0	0	0	0	0	ov	-0.999756V
0	0	0	0	0	0	0	0	0	0	0	1	–244μV	0.999512V
												•	
												1 .	
												•	
												•	
1	0	0	0	0	0	0	0	0	0	0	0	-0.5	-0.499756
1	1	1	1	1	1	1	1	1	1	1	1	-0.999756V	0
				-	-								

TABLE I. Input Code vs Output Voltage Relationships.

BIT	VOLTAGE (No External Load, Vour)
1	-0.5
2	-0.25
3	-0.125
4	-62.5mV
5	-31.25mV
6	-15.625mV
7	-7.8125mV
8	-3.9063mV
9	-1.9531mV
10	_976μV
11	-488µV
12 (LSB)	244µV

TABLE II. Nominal Bit Weight Values.

Burr-Brown IC Data Book—Data Conversion Products

3.25

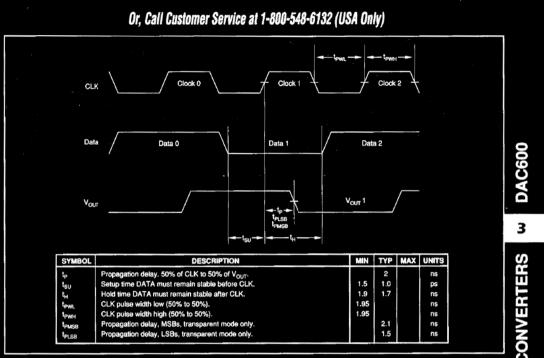


FIGURE 5. Timing Diagram.

analog ground plane. For speeds of up to 256MHz, series termination with 47 Ω resistors will be adequate (Figure 6). This termination technique will greatly lessen the issue of termination currents coupling into the analog ground plane. This is shown in the typical DAC600 connection diagram (Figure 7.)

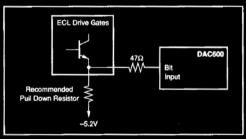


FIGURE 6. Series Bit Termination.

LAYOUT AND POWER SUPPLIES

A multilayer PC board with a solid ground and power planes is recommended. All of the ground pins (both analog and digital) should be connected directly to the analog ground plane at the DAC600.

Wide busses for the power paths are recommended as good general practice. External bypassing is recommended. A 10μ F ceramic capacitor in parallel with a 0.01μ F chip capacitor will be sufficient in most applications.

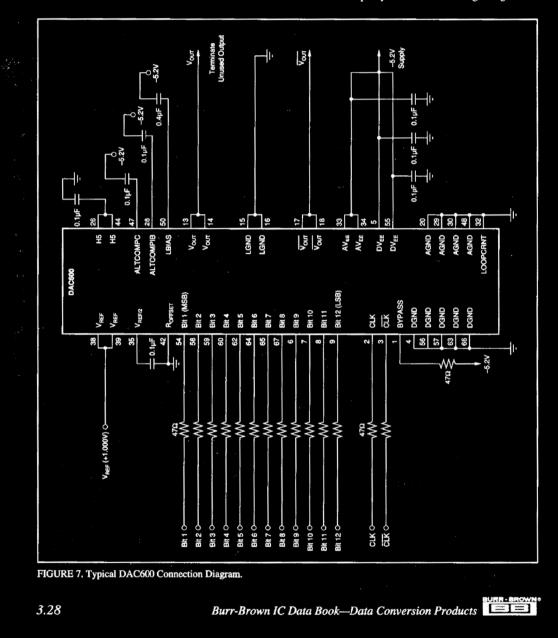
Burr-Brown IC Data Book-Data Conversion Products

ALTCOMPB and ALTCOMPC should be bypassed with 0.1 μF capacitors connected to V_{EEA}. When not used in the multiplying mode LBIAS should be bypassed with a 0.4 μF capacitor connected to V_{EEA}. The heat spreader (pins 26 and 44) should be bypassed with a 0.1 μF capacitor.

MAXIMIZING PERFORMANCE

In addition to optimizing the layout and ground of the DAC600, there are other important issues to consider when optimizing the performance of this DAC in various AC applications.

The DAC600 includes an internal 50 Ω output impedance to simplify output interfacing to a 50 Ω load. Because some loads may be a complex impedance, care must be taken to match the output impedance with the load. Mismatching of impedances can cause reflections which will affect the measured AC performance parameters such as settling time, harmonic distortion, rise/fall times, etc. Often complex impedances can be matched by placing a variable 3 to 10pF capacitor at the output of the DAC to ground. Also, probing the output of the DAC can present a complex impedance.


The typical performance curves of Spurious Free Dynamic Range vs various combinations of clock rate and/or input frequency should give a general idea of the spectral performance of the DAC under system specific clock and output frequencies. For variable frequency DDS and ARB applications, having a programmable frequency bandpass (smart) filter at the output of the DAC can greatly improve system

3:27

For Immediate Assistance, Contact Your Local Salesperson

spur and noise performance by filtering out unwanted spur and noise spectra. Even with a programmable bandpass filter, care should be taken to update the DAC at greater than 4 times per cycle to (1) minimize the 2nd and 3rd harmonic magnitudes by having the output slew excessively between any successive clock and (3) to keep the 2nd harmonic and other even order harmonics from folding back close to the fundamental under the condition $f_{OLT} = 1/3 f_{CLK}$ and (3) to keep the 3rd harmonic and other harmonics from folding back close to the fundamental under the condition $f_{otrr}=1/4\,f_{cLK}.$ The making use of the high update rate of the DAC600 helps to lessen the problems of large harmonics "folding back" into the passband.

For DDS applications, often the DAC itself is the limit in Spurious Free Dynamic Range (SFDR) performance. However, due to the high linearity of the DAC600, low frequency spurious performance may be limited by the digital truncation error of the phase accumulator/ROM combination. Most vendors supplying a combination of phase accumulator and ROM specify the SFDR of their digital algorithm.

