Siliconix DG5043

Monolithic General Purpose CMOS Analog Switch

Features

- ±15-V Input Range
- On-Resistance: $<50 \Omega$
- Break-Before-Make Switching
- TTL and CMOS Compatible

Benefits

- Improved Signal Headroom
- Reduced Switching Errors
- No Shorting of Inputs
- Simple Interfacing

Applications

- Audio Switching
- Instrumentation
- Battery Powered Systems

Description

The DG5043 solid state analog switch is recommended for general purpose applications in instrumentation, and process control. Built on the Siliconix PLUS-40 high voltage CMOS process, this device provides ease-of-use and performance advantages to the system designer. Key performance features of the DG5043 are 1-µs switching,

low power supply requirements, and break-before-make switching. Each switch conducts equally well in either direction, when on, and blocks up to 30 V peak-to-peak when off. Off leakage current is 1-nA maximum. An epitaxial layer prevents latch up. For new designs, DG403 is recommended.

Functional Block Diagram and Pin Configuration

Truth Table

Logic	SW ₁ , SW ₂	SW ₃ , SW ₄
0	OFF	ON
1	ON	OFF

 $\begin{array}{rl} Logic \ "0" = & \leq 0.8 \ V \\ Logic \ "1" = & \geq 2 \ V \\ Switches shown for Logic \ "1" input. \end{array}$

Ordering Information

Temp Range	Package	Part Number		
0 to 70°C	16-Pin Plastic DIP	DG5043CJ		

DG5043 Siliconix

Absolute Maximum Ratings

V+ to V
GND to V
V_L (GND - 0.3 V) to 44 V
Digital Inputs a V_S , V_D $(V-)$ -2 V to $(V+$ plus 2 $V)$ or 30 mA, whichever occurs first
Current (Any Terminal) Continuous
Current, S or D (Pulsed 1 ms 10% duty) 100 mA
Storage Temperature –65 to 125°C

Power Dissipation (Package) ^b	
16-Pin Plastic DIP ^c	пW

Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 6 mW/°C above 75°C

Specifications

		Test Conditions Unless Otherwise Specified		C Suffix 0 to 70°C			
Parameter	Symbol	V+=15 V, V-=-15 V $V_L=5 \text{ V}, V_{IN}=2 \text{ V}, 0.8 \text{ V}^e$	Temp ^a	Min ^c	Typ ^b	Max ^c	Unit
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	-15		15	V
Drain-Source On-Resistance	r _{DS(on)}	$I_{S} = -10 \text{ mA}, V_{D} = \pm 10 \text{ V}$	Room Full			50 75	Ω
Switch Off Leakage Current	į.	$V_S = V_D = 14 \text{ V}$	Room Full	$-1 \\ -100$		1 100	nA
	$I_{S(off)}$	$V_{S} = V_{D} = -14 \text{ V}$	Room Full	-1 -100		1 100	
Channel On Leakage Current	I _{D(on)}	$V_S = V_D = 14 \text{ V}$	Room Full			2 200	
		$V_{S} = V_{D} = -14 \text{ V}$	Room Full	$-2 \\ -200$			
Digital Control							
Input Current with V _{IN} Low	$I_{ m IL}$	V_{IN} Under Test = 0.8 V	Full	-1		1	
Input Current with V _{IN} High	I_{IH}	V _{IN} Under Test = 2 V	Full	-1		1	μA
Dynamic Characteristics							
Turn-On Time	t _{ON}	$V_S = \pm 10 \text{ V}, R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$ See Figure 1	Room			1200	
Turn-Off Time	t _{OFF}	See Figure 1	Room			700	ns
Charge Injection ^d	Q	$C_{L} = 10 \text{ nF}, V_{gen} = 0 \text{ V}, R_{gen} = 0 \Omega$	Room		30		рC
Off Isolation ^d	OIRR	$R_L = 75 \Omega, C_L = 5 \text{ pF, f} = 1 \text{ MHz}$	Room		75		dB
Crosstalk (Channel-to-Channel)d	X _{TALK}	$R_L = 75 \Omega, V_S = 2 V_{P-B} f = 1 MHz$	Room		89		
Source Off Capacitance	$C_{S(off)}$		Room		15		pF
Drain Off Capacitance ^d	$C_{D(off)}$	$V_D = V_S = 0 \text{ V}, f = 1 \text{ MHz}$	Room		17		
Channel On Capacitance ^d	$C_{D(on)}$		Room		45		
Power Supplies							
Positive Supply Current	I+	$V_{IN} = 0$ or 2.4 V	Full			300	
Negative Supply Current	I-		Full	-300			
Logic Supply Current	I_{L}	$V_{\rm IN} = 0$ or 2.4 V	Full			300	μA
Ground Current	I_{GND}		Full	-300			

Notes

- a. Room = 25° C, Full = as determined by the operating temperature suffix.
- b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guaranteed by design, not subject to production test.
- V_{IN} = input voltage to perform proper function.

Siliconix DG5043

Test Circuits

Figure 1. Switching Time

Figure 2. Charge Injection