DM54LS75/DM74LS75 Quad Latches #### **General Description** These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable is high, and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occured) is retained at the Q output until the enable is permitted to go high. These latches feature complementary Q and \overline{Q} outputs from a 4-bit latch, and are available in 16-pin packages. #### **Connection Diagram** Order Number DM54LS75J, DM54LS75W, DM74LS75M or DM74LS75N See NS Package Number J16A, M16A, N16A or W16A #### Function Table (Each Latch) | ļ | fi | nputs | Outputs | | | | |---|----|--------|----------------|------------------|--|--| | | D | Enable | Q | Q | | | | | L | Н | L | Н | | | | | Н | Н | Н | L | | | | | Х | L | Q ₀ | \overline{Q}_0 | | | H = High Level, L = Low Level, X = Don't Care Q₀ = The Level of Q Before the High-to-Low Transition of ENABLE #### Logic Diagram (Each Latch) TL/F/6374-2 #### **Absolute Maximum Ratings (Note)** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range Storage Temperature Range -65°C to +150°C Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. # **Recommended Operating Conditions** | Symbol | Parameter | DM54LS75 | | | DM74LS75 | | | Units | | |-----------------|--------------------------------|----------|-----|------|----------|-----|------|-------|--| | Symbol | raiametei | Min | Nom | Max | Min | Nom | Max | Jinta | | | V _{CC} | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | | V _{IH} | High Level Input Voltage | 2 | | | 2 | | | ٧ | | | V _{IL} | Low Level Input Voltage | | | 0.7 | | | 0.8 | ٧ | | | Іон | High Level Output Current | | | -0.4 | | | -0.4 | mA | | | loL | Low Level Output Current | | | 4 | | | 8 | mA | | | t _W | Enable Pulse Width (Note 4) | 20 | | | 20 | | | ns | | | t _{SU} | Setup Time (Note 4) | 20 | | | 20 | | | ns | | | t _H | Hold Time (Note 4) | 0 | | | 0 | | | ns | | | TA | Free Air Operating Temperature | -55 | | 125 | 0 | | 70 | °C | | ## Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted) | Symbol | Parameter | Conditions | | Min | Typ
(Note 1) | Max | Units | |-----------------|------------------------------|--|--------|-----|-----------------|------|----------| | VI | Input Clamp Voltage | $V_{CC} = Min, I_I = -18 mA$ | | | | -1.5 | ٧ | | V _{OH} | High Level Output
Voltage | $V_{CC} = Min, I_{OH} = Max$
$V_{IL} = Max, V_{IH} = Min$ | DM54 | 2.5 | 3.5 | | V | | | | | DM74 | 2.7 | 3.5 | | | | V _{OL} | Low Level Output | V _{CC} = Min, I _{OL} = Max | DM54 | | 0.25 | 0.4 | V | | | Voltage | $V_{IL} = Max, V_{IH} = Min$ | DM74 | | 0.35 | 0.5 | | | | | $I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$ | DM74 | | 0.25 | 0.4 | | | l ₁ | Input Current @ Max | V _{CC} = Max, V _I = 7V | D | | | 0.1 | mA
μA | | | Input Voltage | | Enable | | | 0.4 | | | l _{IH} | High Level Input
Current | $V_{CC} = Max, V_I = 2.7V$ | D | | | 20 | | | | | | Enable | | | 80 | | | IIL | Low Level Input
Current | $V_{CC} = Max, V_I = 0.4V$ | D | | | -0.4 | - mA | | | | | Enable | | | -1.6 | | | los | Short Circuit | 1 00 | DM54 | -20 | | -100 | - mA | | | Output Current | | DM74 | -20 | | -100 | | | Icc | Supply Current | V _{CC} = Max (Note 3) | | | 6.3 | 12 | mA | Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all outputs open and all inputs grounded. Note 4: $T_A = 25$ °C and $V_{CC} = 5V$. # **Switching Characteristics** at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load) | | Parameter | From (Input)
To (Output) | | | | | | |------------------|--|-----------------------------|----------------|-----|------------------------|-----|-------| | Symbol | | | $C_L = 15 pF$ | | C _L = 50 pF | | Units | | | | | Min | Max | Min | Max | | | t _{PLH} | Propagation Delay Time
Low to High Level Output | D to
Q | | 27 | | 30 | ns | | tpHL | Propagation Delay Time
High to Low Level Output | D to
Q | | 17 | | 25 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | D to
\overline{Q} | | 20 | | 25 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | D to | | 15 | | 20 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | Enable to
Q | | 27 | | 30 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | Enable to
Q | | 25 | | 30 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | Enable to Q | | 30 | | 30 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | Enable to Q | | 15 | | 20 | ns |