

Gates, Series 54/74

DM7440 (SN7440) dual four input buffer

general description

Employing TTL (Transistor-Transistor-Logic) the DM7440 buffer is used when high fan-out is desirable. In addition to driving a large number of TTL inputs, this buffer can be used to drive lines between equipments, to operate small relays and lamps (50 mA), and to act as a clock driver for synchronous logic systems. It is completely compatible with other Series 74 devices.

Key features include:

■ Typical Noise Immunity

1V

Guaranteed Noise Immunity

400 mV

Fan Out

30

■ Diode Clamps on Inputs

schematic and connection diagrams

absolute maximum ratings

 $\begin{array}{ccc} V_{CC} & 7.0V \\ \text{Input Voltage} & 5.5V \\ \text{Operating Temperature Range} & 0^{\circ}\text{C to } +70^{\circ}\text{C} \\ \text{Storage Temperature Range} & -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ \text{Fan-Out} & 30 \\ \text{Lead Temperature (Soldering, 10 sec)} & 300^{\circ}\text{C} \\ \end{array}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Diode Clamp Voltage	V _{CC} = 5.0V, T _A = 25°C, I _{IN} = -12 mA		-1.0	-1.5	٧
Logical ''1'' Input Voltage	V _{CC} = 4.75V	2.0			V
Logical ''0'' Input Voltage	V _{CC} = 4.75V			0.8	V
Logical ''1'' Output Voltage	$V_{CC} = 4.75V, V_{IN} = 0.8V, I_{OUT} = -1.2 \text{ mA}$	2.4			٧
Logical "0" Output Voltage	V _{CC} = 4.75V, V _{IN} = 2.0V, I _{OUT} = 48 mA			0.4	V
Logical "1" Input Current	V _{CC} = 5.25V, V _{IN} = 2.4V			40	μΑ
Logical "1" Input Current	V _{CC} = 5.25V, V _{IN} = 5.5V	þ		1.0	mA
Logical ''0'' Input Current	V _{CC} = 5.25V, V _{IN} = 0.4V	ı		-1.6	mA
Output Short Circuit Current (Note 2)	V _{CC} = 5.25V, V _{IN} = 0V	-24.0	-55	-70.0	mA
Supply Current — Logical "0" (Note 3)	$V_{CC} = 5.25V, V_{IN} = 5.0V, 25^{\circ}C$		8.6	11.4	mA
Supply Current — Logical "1" (Note 3)	$V_{CC} = 5.25V, V_{IN} = 0V, 25^{\circ}C$		2.0	3.6	mA
Propagation Delay Time to Logical "0", t _{pd 0}	V _{CC} = 5.0V, T _A = 25°C, C = 50 pF F.O. = 30		10	15	ns
Propagation Delay Time to Logical "1", t _{pd 1}	V _{CC} = 5.0V, T _A = 25°C, C = 50 pF F.O. = 30		8	25	ns

Note 1: Unless otherwise specified, min/max limits apply across the guaranteed temperature range of 0°C to 70°C . All typicals are given for V_{CC} = 5.0V and T_{A} = 25°C.

Note 2: Not more than 1 output should be shorted at a time.

Note 3: Each gate.

typical performance characteristics

Input Clamp Diode Characteristics

TA = +125°C

TA = +25°C

TA = +25°C

TA = 55°C

Transition Time to a Logical "O" (tpd0) vs Temperature

40
35
30
V_{CC} = 5.0V

25
150 pF
100 pF
100

Logical "0" Output Voltage

ac test circuit

switching time waveform