

TTL MSI

DM5475 /DM7475 (SN5475/SN7475) quad latch

general description

The DM5475/DM7475 is a four-bit storage element utilizing latch-connected gates to perform the memory function. TTL circuitry is employed providing fast speed and high noise immunity.

The information bits to be stored are applied to the D inputs. If the CLOCK input is in the logical 1 state, the Q output will follow the information applied to the corresponding D input. When the

CLOCK is taken to the logical 0 state, whatever binary state was present on the D input at the time of this transition will be stored on the Q output. \overline{Q} is also provided for added flexibility.

Two separate clock input lines are provided, each controlling two latches, so that other applications—such as a two-phase flip-flop—can be performed.

logic and connection diagram

truth table

tn	t _n	+1
D	Q	ā
1	1	0
0	0	1

t_n = time previous to negative-going clock transition

t_{n+1} = time after negative-going clock transition

typical applications

Buffer Storage for Indicators

Dual Rank Shift Register

absolute maximum ratings

Supply Voltage
Input Voltage
Fanout
Storage Temperature Range
Operating Temperature Range
DM5475

5.5V 10 -65°C to +150°C -55°C to +125°C 0°C to +70°C 300°C

+7V

DM7475 Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 1)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Input Diode Clamp Voltage		$V_{CC} = 5.0 \text{V } I_{OUT} = -12 \text{ mA}$ $T_A = 25^{\circ} \text{C}$		95	-1.5	V
Logical "1" Input Voltage	DM5475	V _{CC} = 4.5V V _{CC} = 4.75V	2.0	*		v
Logical "0" Input Voltage	DM5475	V _{CC} = 4.5V			0.8	V
Logical "1" Output Voltage	DM7475 DM5475	$V_{CC} = 4.75V$ $V_{CC} = 4.5V$ $V_{CC} = 4.75V$ $I_{OUT} = -400 \mu\text{A}$	2.4			\ _V
	DM7475 DM5475	96	2.4			
Logical "0" Output Voltage	DM7475	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$ $I_{OUT} = 16 \text{ mA}$			0.4	V
Logical "1" Input Current	DM5475 DM7475	$\frac{V_{CC} = 5.5V}{V_{CC} = 5.25V}$ $V_{IN} = 2.4V$ CLOCK			80 80	μA μA
Logical "1" Input Current	DM5475	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$ $V_{IN} = 5.5V$	-:		1	mA
Logical "0" Input Current	DM5475	$\frac{V_{CC} = 5.5V}{V_{CC} = 5.25V}$ $V_{IN} = 0.4V$ CLOCK		-2.1	-3.2	mA
Output Short Current	DM7475 DM5475	$V_{CC} = 5.25V$ CLOCK $V_{CC} = 5.5V$ $V_{CC} = 5.25V$ $V_{OUT} = 0V$	-20	-2.1 -32	-3.2 -55	mA mA
(Note 2)	DM7475 DM5475	V _{cc} = 5.25V V _{cc} = 5.5V	-18	-52	_ 33	mA
Supply Current	DM7475	V _{CC} = 5.25V		32	50	mA
Propagation Delay Time to a Logical "0" from Clock, t _{pd}		$V_{CC} = 5.0V$ $T_A = 25^{\circ}C$	3	7	15	ns
Propagation Delay Time to a Logical "1" from Clock, t _{pd}		$V_{CC} = 5.0V$ $T_A = 25^{\circ}C$	10	21	40	ns
Setup Time for a Logical "1", t _{S1}		$V_{CC} = 5.0V$ $T_A = 25^{\circ}C$		10	20	ns
Setup Time for a Logical "0", t _{S0}		$V_{CC} = 5.0V$ $T_A = 25^{\circ}C$		12	25	ns

Note 1: These specifications apply across the ~55°C to ± 125 °C temperature range for the DM5475 and the 0°C to ± 70 °C temperature range for the DM7475 unless otherwise specified. Typicals apply only to 25°C @ V_{CC} = 5.0V.

Note 2: Only one output should be shorted at a time.

