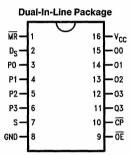


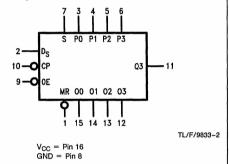
54LS395/DM74LS395 4-Bit Shift Register with TRI-STATE® Outputs


General Description

The LS395 is a 4-bit shift register with TRI-STATE outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchronous active LOW Master Reset $(\overline{\text{MR}})$ input overrides the synchronous operations and clears the register. An active LOW Output Enable $(\overline{\text{OE}})$ input controls the TRI-STATE output buffers, but does not interfere with the other operations. The fourth stage also has a conventional output for linking purposes in multi-stage serial operations.

Features

- Shift right or parallel 4-bit register
- TRI-STATE outputs
- Input clamp diodes limit high speed termination effects
- Fully CMOS and TTL compatible


Connection Diagram

TL/F/9833-1

Order Number 54LS395DMQB, 54LS395FMQB, 54LS395LMQB, DM74LS395WM or DM74LS395N See NS Package Number E20A, J16A, M16B, N16E or W16A

Logic Symbol

Mode Select Table

Operating Mode	Inputs @ t _n					Outputs @ t _{n+1}			
Operating mode	MR	CP	s	Ds	Pn	00	01	02	О3
Asynchronous Reset Shift, SET First Stage	L H	×	X L	X H	X X	L H	L O0 _n	L 01 _n	L 02 _n
Shift, RESET First Stage Parallel Load	H	11	L	L X	X Pn	L P0	00 _n P1	01 _n P2	02 _n P3

 t_n , t_{n+1} = Time before and after CP HIGH-to-LOW transition

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 10V

Operating Free Air Temperature Range

 Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS395				Units		
	rameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage	2			2			٧
V _{IL}	Low Level Input Voltage			0.7			0.8	٧
ЮН	High Level Output Current			-0.4			-0.4	mA
loL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW S, D _S or P _n to CP	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW S, D _S or P _n to CP	5 5			5 5			ns
t _w (L)	CP Pulse Width LOW	18			18			ns
t _w (L)	MR Pulse Width LOW	20			20			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)

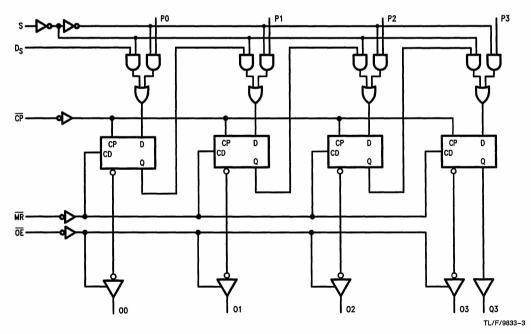
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	٧	
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max$ $DM74$		2.5		i	٧	
	Voltage			2.7				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS			0.4		
	Voltage	V _{IH} = Min	DM74		0.35	0.5	v	
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4		
lį	Input Current @ Max Input Voltage	$V_{CC} = Max, V_{I} = 10V$				0.1	mA	
l _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ	
Iլլ	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-0.4	mA	
los	Short Circuit	$V_{CC} = Max$ 541		-20		-100	mA	
	Output Current	(Note 2)	DM74	-20		-100		
lcc	Supply Current with Outputs OFF	$V_{CC} = Max, \overline{OE}, D_S, S = 4.5V$ $\overline{CP} = \mathcal{N}, P_n = GND$				29	mA	
	Supply Current with Outputs ON	$V_{CC} = Max, D_S, S = 4.5V$ $\overrightarrow{OE}, \overrightarrow{CP}, P_n = GND$				25	mA	
lozh	TRI-STATE Output Off Current HIGH	V _{CC} = V _{CCH} V _{OZH} = 2.7V				20	μΑ	
lozL	TRI-STATE Output Off Current LOW	V _{CC} = V _{CCH} V _{OZL} = 0.4V				-20	μΑ	

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)

		54LS/I		
Symbol	Parameter	$R_L = 2 k\Omega$		
		Min	Max	
f _{max}	Maximum Shift Frequency	30		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to O _n		35 25	ns
t _{PHL}	Propagation Delay MR to O _n		35	ns
^t PZH ^t PZL	Output Enable Time		20 20	ns
t _{PHZ} t _{PLZ}	Output Disable Time		17 23	ns


Functional Description

The LS395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a D input either from a Parallel (Pn) input or from the preceding stage. When the Select input is HIGH, the Pn inputs are enabled. A LOW signal in the S input enables the serial inputs for shift-right operations, as indicated in the Truth Table.

State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse (CP) input. Signals on the Pn, DS and S inputs can change when the Clock is in either state, provided that the recommended setup and hold times are observed. When the S input is LOW, a $\overline{\text{CP}}$ HIGH-LOW transition transfers data in O0 to O1, O1 to O2, and O2 to O3. A left-shift is accomplished by connecting the outputs back to the P_n inputs, but offset one place to the left, i.e., O3 to P2, O2 to P1, and O1 to P0, with P3 acting as the linking input from another package.

When the OE input is HIGH, the output buffers are disabled and the O0-O3 outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

Logic Diagram

