National Semiconductor

DM54S373/DM74S373, DM54S374/DM74S374 TRI-STATE[®] Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole TRI-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the DM54/74S373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

The eight flip-flops of the DM54/74S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

Schmitt-trigger buffered inputs at the enable/clock lines simplify system design as ac and dc noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- TRI-STATE bus-driving outputs
- Full parallel-access for loading
 - Buffered control inputs
 - P-N-P input reduce D-C loading on data lines

Connection Diagrams

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM54S	-55°C to +125°C
DM74S	0°C to +70°C

Function Tables

DM54/74S373

Truth Table							
Output Control	Enable G	D	Output				
L	н	н	Н				
L	н	L	L				
L	L	х	Q ₀				
н	X	Х	Z				

Storage Temperature Range

S373 • S374

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM54/74S374 Truth Table							
Output Control Clock D Output							
L	1	н	Н				
L	↑	L	L				
L	L L	х	Q ₀				
н	X	х	Z				

H = High Level (Steady State), L = Low Level (Steady State), X = Don't Care

 \uparrow = Transition from low-to-high level, Z = High Impedance State

 $Q_0 =$ The level of the output before steady-state input conditions were established.

Logic Diagrams

5373 Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)									
Symbol	Parameter		DM54S373			DM74S373			Unito
-,			Min	Nom	Max	Min	Nom	Max	onita
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage		2			2			v
VIL	Low Level Input Voltage				0.8			0.8	V
I _{OH}	High Level Output Current				-2			-6.5	mA
IOL	Low Level Output Current				20			20	mA
t _W	Pulse Width (Note 2)	Enable High	6			6			ns
		Enable Low	7.3			7.3			113
t _{SU}	Data Setup Time (Notes 1 and 3)		o↓			o↓			ns
t _H	Data Hold Time (Notes 1 and 3)		10↓			10↓			ns
TA	Free Air Operating Temperat	ture	-55		125	0		70	°C

Note 1: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 2: C_L = 15 pF, R_L = 280 Ω , T_A = 25 $^{\circ}C$ and V_{CC} = 5V.

Note 3: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'S373 Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1$	= -18 mA			-1.2	v
V _{OH}	High Level Output	$V_{CC} = Min$	DM54	2.4	3.4		
	Voltage	I _{OH} = Max V _{IL} = Max V _{IH} = Min	DM74	2.4	3.2		v
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_O$ $V_{IH} = Min, V_{IL}$			0.5	v	
lı	Input Current @ Max Input Voltage	V _{CC} = Max, V			1	mA	
Чн	High Level Input Current	V _{CC} = Max, V			50	μΑ	
lιL	Low Level Input Current	V _{CC} = Max, V	_I = 0.5V			-250	μΑ
^I оzн	Off-State Output Current with High Level Output Voltage Applied	V _{CC} = Max, V V _{IH} = Min, V _{IL}			50	μΑ	
loz∟	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:V_CC} \begin{split} V_{CC} &= Max, V_{O} = 0.5V\\ V_{IH} &= Min, V_{IL} = Max \end{split}$				-50	μΑ
los	Short Circuit	V _{CC} = Max	DM54	-40		-100	mΑ
	Output Current (Note 5)	DM74	-40		-100		
lcc	Supply Current	V _{CC} = Max Outputs High or			105	160	mA
			Outputs Disabled			190	

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

S373 • S374

'S373 Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

(See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input)	C _L = 15 pF		C _L = 50 pF		Units
1		To (Output)	Mín	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Any Q		12		14	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Any Q		12		16	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Enable to Any Q		14		14	ns
^t PHL	Propagation Delay Time High to Low Level Output	Enable to Any Q		18		21	ns
^t РZH	Enable Time to High Level Output	Output Control to Any Q		15		17	ns
^t PZL	Output Enable Time to Low Level Output	Output Control to Any Q		18		23	ns
^t PHZ	Output Disable Time to High Level Output (Note 1)	Output Control to Any Q		9			ns
t _{PLZ}	Output Disable Time to Low Level Output (Note 1)	Output Control to Any Q		12			ns

Note 1: $C_L = 5 pF$

'S374 Recommended Operating Conditions

(See Section 1 for Test Waveforms and Output Load)

Symbol	bol Parameter		DM54S374			DM74S374			Unite
Symbol			Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage		2						v
VIL	Low Level Input Voltage				0.8			0.8	v
ЮН	High Level Output Currer	nt			-2			-6.5	mA
lol	Low Level Output Current				20			20	mA
fCLK	Clock Frequency (Note 2)	0	100	75	0	100	75	MHz
fclk	Clock Frequency (Note 3)		0	100	75	0	100	75	MHz
tw	Pulse Width (Note 2)	Clock High	6		i	6			
		Clock Low	7.3			7.3			ne
	Pulse Width (Note 3)	Clock High	15			15			13
		Clock Low	15			15			
tsu	Data Setup Time (Notes 1 and 4)		5↑			5↑			ns
tн	Data Hold Time (Notes 1 and 4)		2↑			2↑			ns
TA	Free Air Operating Temp	erature	-55		125	0		70	°C

Note 1: The symbol (1) indicates the rising edge of the clock pulse is used for reference.

 $\begin{array}{l} \mbox{Note 2: } C_L = 15 \ pF, \ R_L = 280\Omega, \ T_A = 25^\circ C \ and \ V_{CC} = 5V. \\ \mbox{Note 3: } C_L = 50 \ pF, \ R_L = 280\Omega, \ T_A = 25^\circ C \ and \ V_{CC} = 5V. \\ \mbox{Note 4: } T_A = 25^\circ C \ and \ V_{CC} = 5V. \\ \end{array}$

'S374 Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	V _{CC} = Min, I _I :	= -18 mA			-1.2	v	
VOH	High Level Output	V _{CC} = Min	DM54	2.4	3.4			
	Voltage	I _{OH} = Max V _{IL} = Max V _{IH} = Min	DM74	2.4	3.2		V	
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OI}$ $V_{IH} = Min, V_{IL}$	_ = Max = Max			0.5	v	
l,	Input Current @ Max Input Voltage	V _{CC} = Max, V	= 5.5V			1	mA	
ĺн	High Level Input Current	V _{CC} = Max, V	= 2.7V			50	μΑ	
Ι _{ΙL}	Low Level Input Current	V _{CC} = Max, V	= 0.5V			-250	μΑ	
ЮZH	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max, V_{IL}$ $V_{IH} = Min, V_{IL}$	_D = 2.4V = Max			50	μΑ	
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max, V_O = 0.5V$ $V_{IH} = Min, V_{IL} = Max$				-50	μΑ	
los	Short Circuit	V _{CC} = Max	DM54	-40		-100	m۵	
	Output Current	(Note 2)	DM74	-40		- 100		
lcc	Supply Current	V _{CC} = Max	Outputs High			110		
			Outputs Low		90	140	mA	
			Outputs Disabled			160		

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

'S374 Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

(See Section 1 for Test Waveforms and Output Load)

	Parameter	From (Input)					
Symbol			C _L = 15 pF		C _L = 50 pF		Units
		i o (output)	Min	Max	Min	Max	
fMAX	Maximum Clock Frequency			75		75	MHz
^t PLH	Propagation Delay Time Low to High Level Output	Clock to Any Q		15		15	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Any Q		17		20	ns
t _{PZH}	Output Enable Time to High Level Output	Output Control to Any Q		15		17	ns
t _{PZL}	Output Enable Time to Low Level Output	Output Control to Any Q		18		23	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 1)	Output Control to Any Q		9			ns
tPLZ	Output Disable Time from Low Level Output (Note 1)	Output Control to Any Q		12			ns
Note 1: CL =	5 pF						