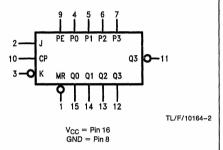


DM93S00

4-Bit Universal Shift Register

General Description

This device is 4-bit universal shift register. As a high speed multifunctional sequential logic block, it is useful in a wide variety of register and counter applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers.


Features

- Asynchronous master reset
- J, K inputs to first stage

Connection Diagram

Dual-In-Line Package MR. 16 Vcc 15 **-**Q0 -01 PO--02 12 -Q3 - 03 P2 -P3 10 -CP GND -

Logic Symbol

Order Number DM93S00N See NS Package Number N16E

Truth Table

Operating	Inputs (MR = H)						Outputs @ tn + 1					
Mode	PE	J	K	P0	P1	P2	Р3	Q0	Q1	Q2	Q3	Q3
Shift Mode	н	L	L	Х	Х	Х	Х	L	Q0	Q1	Q2	Q2
	Н	L	Н	×	Х	X	X	Q0	Q0	Q1	Q2	Q2
	Н	Н	L	x	Х	X	Х	Q0	Q0	Q1	Q2	Q2
	Н	Н	Н	Х	X	X	X	Н	Q0	Q1	Q2	Q2
Parallel	L	Х	Х	L	L	L	L	L	L	L	L	Н
Entry Mode	L	×	X	Н	Н	Н	Н	Н	Н	Н	Н	L

TL/F/10164-1

^{*}tn+1 = State after next LOW-to-HIGH clock transition.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings

Supply Voltage 7V Input Voltage 5.5V

Operating Free Air Temperature Range

DM93S 0°C to +70°C Storage Temperature Range −65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Units			
Symbol	Parameter	Min	Nom	Max	Oille	
Vcc	Supply Voltage	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			V	
V _{IL}	Low Level Input Voltage			0.8	٧	
ЮН	High Level Output Current			-1	mA	
loL	Low Level Output Current			20	mA	
TA	Free Air Operating Temperature	0		70	°C	
t _s (H) t _s (L)	Setup Time HIGH or LOW, J, K and P0−P3 to CP	6.0 6.0			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW, J, K and P0−P3 to CP	0			ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW, PE to CP	8.0 8.0			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW, PE to CP	0			ns	
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	7.0 7.0			ns	
t _w (L)	MR Pulse Width LOW	12			ns	
t _{rec}	Recovery Time MR to CP	5.0			ns	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$			-1.2	٧
VOH	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max$	2.7	3.4		>
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min$		0.35	0.5	٧
lj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
lн	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			50	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$			-2.0	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	20		80	mA
lcc	Supply Current	V _{CC} = Max			120	mA

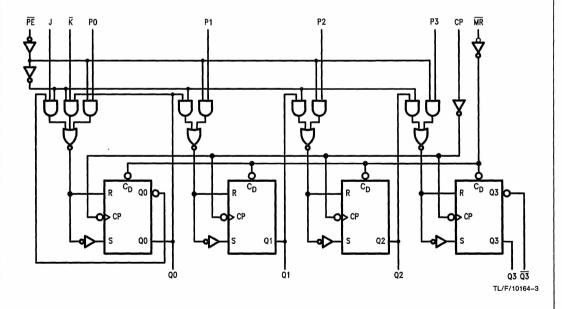
Note 1: All typicals are at $V_{CC}=5V$, $T_A=25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

$\textbf{Switching Characteristics} \text{ at V}_{CC} = 5 \text{V and T}_{A} = 25^{\circ}\text{C (See Section 1 for Test Waveforms and Output Load)}$

Symbol	Parameter	R _L =	Units	
		Min	Max	
f _{max}	Maximum Shift Frequency	70		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Qn		8.5 12	ns
t _{PHL}	Propagation Delay MR to Qn		23	ns

Functional Description


The Logic Diagrams and Truth Table indicate the functional characteristics of the DM93S00 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers.

The DM93S00 has two primary modes of operation, shift right (Q0 \rightarrow Q1) and parallel load, which are controlled by the state of the Parallel Enable (PE) input. When the PE input is HIGH, serial data enters the first flip-flop Q0 via the J and \overline{K} inputs and is shifted one bit in the direction Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3 following each LOW-to-HIGH clock transition. The J \overline{K} inputs provide the flexibility of the J \overline{K} type input for special applications, and the simple

D-type input for general applications by tying the two pins together. When the \overline{PE} input is LOW, the DM93S00 appears as four common clocked D flip-flops. The data on the parallel inputs P0–P3 is transferred to the respective Q0–Q3 outputs following the LOW-to-HIGH clock transition. Shift left operation (Q3 \rightarrow Q2) can be achieved by tying the Qn outputs to the Pn–1 inputs and holding the \overline{PE} input LOW.

All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the DM93S00 utilizes edge triggering, there is no restriction on the activity of the J, $\overline{\rm K}$, Pn and $\overline{\rm PE}$ inputs for logic operation—except for the setup and release time requirements. A LOW on the asynchronous Master Reset ($\overline{\rm MR}$) input sets all Q outputs LOW, independent of any other input condition.

Logic Diagram

