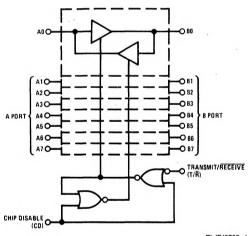


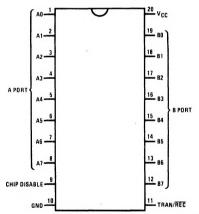
# DP7304B/DP8304B 8-Bit TRI-STATE® Bidirectional Transceiver (Non-Inverting)

### **General Description**


The DP73048B/DP8304B are high speed Schottky 8-bit TRI-STATE bidirectional transceivers designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (VOH) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.

DP7304B/DP8304B are featured with Transmit/Receive (T/R) and Chip Disable (CD) inputs to simplify control logic.

#### **Features**


- 8-bit bidirectional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high voltage interfaces with TTL, MOS, and CMOS
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Transmit/Receive and chip disable simplify control logic
- Compact 20-pin dual-in-line package
- Bus port glitch free power up/down

### **Logic and Connection Diagrams**



TL/F/8793-1

### **Dual-In-Line Package**



TL/F/8793-2

Top View
Order Number DP7304BJ, DP8304BJ,

DP8304BN or DP8304BWM See NS Package Number J20A, N20A or M20B

### **Logic Table**

| Inputs       |                  | Resulting Conditions |           |  |
|--------------|------------------|----------------------|-----------|--|
| Chip Disable | Transmit/Receive | A Port               | B Port    |  |
| 0            | 0                | OUT                  | IN        |  |
| 0            | 1                | IN                   | ОПТ       |  |
| 1            | X                | TRI-STATE            | TRI-STATE |  |

X = Don't Care

### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Office/Distributors for availability an | d specifications. |
|-----------------------------------------|-------------------|
| Supply Voltage                          | 7V                |
| Input Voltage                           | 5.5V              |
| Output Voltage                          | 5.5V              |
| Storage Temperature                     | -65°C to +150°C   |
| Maximum Power Dissipation* at 25°C      |                   |
| Cavity Package                          | 1667 mW           |
| Molded Package                          | 1832 mW           |

Lead Temperature (soldering, 4 sec.) 260°C 
\*Derate cavity package 11.1 mW/°C above 25°C; derate molded package 14.7 mW/°C above 25°C.

## **Recommended Operating Conditions**

|                                   | Min  | Max  | Units |
|-----------------------------------|------|------|-------|
| Supply Voltage (V <sub>CC</sub> ) |      |      |       |
| DP7304B                           | 4.5  | 5.5  | ٧     |
| DP8304B                           | 4.75 | 5.25 | V     |
| Temperature (T <sub>A</sub> )     |      |      |       |
| DP7304B                           | -55  | 125  | °C    |
| DP8304B                           | 0    | 70   | ٠c    |

### DC Electrical Characteristics (Notes 2 and 3)

| Symbol          | Parameter                              | Conditions                                                                       |                                                     | Min                   | Тур                  | Max        | Units |
|-----------------|----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|----------------------|------------|-------|
| A PORT          | (A0-A7)                                |                                                                                  |                                                     |                       |                      |            |       |
| VIH             | Logical "1" Input Voltage              | $CD = V_{IL}, T/\overline{R} = 2.0V$                                             |                                                     | 2.0                   |                      |            | ٧     |
| V <sub>IL</sub> | Logical "0" Input Voltage              | $CD = V_{IL}, T/\overline{R} = 2.0V$                                             | DP8304B                                             |                       |                      | 0.8        | ٧     |
|                 |                                        |                                                                                  | DP7304B                                             |                       |                      | 0.7        | ٧     |
| V <sub>OH</sub> | Logical "1" Output Voltage             | $CD = V_{IL}, T/\overline{R} = V_{IL}$                                           | $I_{OH} = -0.4 \text{ mA}$                          | V <sub>CC</sub> -1.15 | V <sub>CC</sub> -0.7 |            | ٧     |
|                 |                                        |                                                                                  | $I_{OH} = -3 \text{ mA}$                            | 2.7                   | 3.95                 |            | ٧     |
| V <sub>OL</sub> | Logical "0" Output Voltage             | $CD = T/\overline{R} = V_{IL}$ $I_{OL} = 16 \text{ mA} (8)$                      | 304B)                                               |                       | 0.35                 | 0.5        | V     |
|                 |                                        | I <sub>OL</sub> = 8 mA (bo                                                       | oth)                                                |                       | 0.3                  | 0.4        | ٧     |
| los             | Output Short Circuit<br>Current        | $CD = V_{IL}$ , $T/\overline{R} = V_{IL}$ , $V_O = 0V$ , $V_{CC} = Max (Note 4)$ |                                                     | -10                   | -38                  | <b>⊢75</b> | mA    |
| I <sub>IH</sub> | Logical "1" Input Current              | $CD = V_{IL}, T/\overline{R} = 2.0V, V_{IH} = 2.7V$                              | /                                                   |                       | 0.1                  | 80         | μΑ    |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | $CD = 2.0V, V_{CC} = Max, V_{IH} = 5.2$                                          | 25V                                                 |                       |                      | 1          | mA    |
| I <sub>IL</sub> | Logical "0" Input Current              | $CD = V_{IL}, T/\overline{R} = 2.0V, V_{IN} = 0.4V$                              | $CD = V_{IL}, T/\overline{R} = 2.0V, V_{IN} = 0.4V$ |                       | -70                  | -200       | μΑ    |
| VCLAMP          | Input Clamp Voltage                    | $CD = 2.0V, I_{IN} = -12 \text{ mA}$                                             |                                                     |                       | -0.7                 | -1.5       | ٧     |
| lop             | Output/Input                           | CD = 2.0V                                                                        | $V_{IN} = 0.4V$                                     |                       |                      | -200       | μА    |
|                 | TRI-STATE Current                      |                                                                                  | $V_{IN} = 4.0V$                                     |                       |                      | 80         | μΑ    |
| B PORT          | (B0-B7)                                |                                                                                  |                                                     |                       | 1                    |            |       |
| V <sub>IH</sub> | Logical "1" Input Voltage              | $CD = V_{IL}, T/\overline{R} = V_{IL}$                                           |                                                     | 2.0                   |                      |            | ٧     |
| V <sub>IL</sub> | Logical "0" Input Voltage              | $CD = V_{IL}, T/\overline{R} = V_{IL}$                                           | DP8304B                                             |                       |                      | 0.8        | V     |
|                 |                                        |                                                                                  | DP7304B                                             | × .                   |                      | 0.7        | V     |
| V <sub>OH</sub> | Logical "1" Output Voltage             | $CD = V_{IL}, T/\overline{R} = 2.0V$                                             | $I_{OH} = -0.4 \text{ mA}$                          | V <sub>CC</sub> -1.15 | V <sub>CC</sub> -0.8 |            | ٧     |
|                 |                                        |                                                                                  | $I_{OH} = -5  \text{mA}$                            | 2.7                   | 3.9                  |            | ٧     |
|                 |                                        |                                                                                  | $I_{OH} = -10 \text{ mA}$                           | 2.4                   | 3.6                  |            | v     |
| V <sub>OL</sub> | Logical "0" Output Voltage             | $CD = V_{IL}, T/\overline{R} = 2.0V$                                             | $I_{OL} = 20 \text{ mA}$                            |                       | 0.3                  | 0.4        | ٧     |
|                 |                                        |                                                                                  | $I_{OL} = 48 \text{ mA}$                            |                       | 0.4                  | 0.5        | v     |
| los             | Output Short Circuit<br>Current        | $CD = V_{IL}$ , $T/\overline{R} = 2.0V$ , $V_O = 0V$ , $V_{CC} = Max (Note 4)$   | 40                                                  | -25                   | -50                  | -150       | mA    |

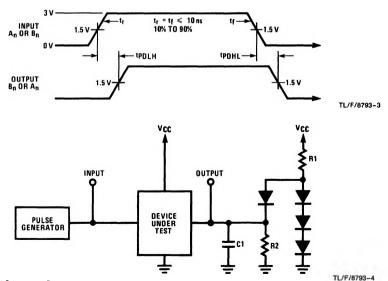
| Symbol          | Parameter                              | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons             | Min | Тур   | Max   | Units |
|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-------|-------|-------|
|                 | B0-B7) (Continued)                     | - k ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · ·           | - N | A. A. | 4 (   | 12    |
| l <sub>ін</sub> | Logical "1" Input Current              | $CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı = 2.7V        |     | 0.1   | 80    | μА    |
| lı .            | Input Current at Maximum Input Voltage | $CD = 2.0V$ , $V_{CC} = Max$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |     |       | 1     | mA    |
| կլ              | Logical "0" Input Current              | $CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı = 0.4V        |     | -70   | -200  | μΑ    |
| VCLAMP          | Input Clamp Voltage                    | $CD = 2.0V, I_{IN} = -12 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A               |     | -0.7  | -1.5  | ٧     |
| lop             | Output/Input                           | $\begin{aligned} \text{CD} &= 2.0\text{V} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ | $V_{IN} = 0.4V$ |     |       | -200  | μΑ    |
|                 | TRI-STATE Current                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |     | +200  | μΑ    |       |
| CONTRO          | L INPUTS CD, T/R                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |     |       | 3     |       |
| V <sub>IH</sub> | Logical "1" Input Voltage              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 2.0 | -     |       | ٧     |
| V <sub>IL</sub> | Logical "0" Input Voltage              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DP8304B         |     | ī     | 0.8   | ٧     |
|                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DP7304B         |     |       | 0.7   | ٧     |
| I <sub>IH</sub> | Logical "1" Input Current              | V <sub>IH</sub> = 2.7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |     | 0.5   | ,20   | μΑ    |
| f <sub>l</sub>  | Maximum Input Current                  | $V_{CC} = Max, V_{IH} = 5.25V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |     |       | 1.0   | mA    |
| I <sub>IL</sub> | Logical "0" Input Current              | V <sub>IL</sub> = 0.4V T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T/R             |     | -0.1  | -0.25 | mA    |
|                 |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CD              |     | -0.25 | -0.5  | mA    |
| VCLAMP          | Input Clamp Voltage                    | I <sub>IN</sub> = -12 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |     | -0.8  | 1.5   | ٧     |
| POWER S         | SUPPLY CURRENT                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |     |       |       |       |
| lcc             | Power Supply Current                   | CD = 2.0V, V <sub>IN</sub> = 0.4V, V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |     | 70    | 100   | mA    |
|                 |                                        | $CD = V_{INA} = 0.4V, T/\overline{R} = 2V, V_{CC} = Max$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |     | 90    | 140   | mA    |

### AC Electrical Characteristics $V_{CC} = 5V, T_A = 25^{\circ}C$

| Symbol             | Parameter                                                           | Conditions                                                                                                                           | Min | Тур      | Max      | Units    |
|--------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----------|----------|
| A PORT             | DATA/MODE SPECIFICATIONS                                            | i.                                                                                                                                   | -   | Ŷ        | 11       |          |
| <sup>t</sup> PDHLA | Propagation Delay to a Logical "0" from B Port to A Port            | CD = 0.4V, $T/\overline{R}$ = 0.4V (Figure A)<br>R1 = 1k, R2 = 5k, C1 = 30 pF                                                        |     | 14       | 18       | ns       |
| <sup>t</sup> PDLHA | Propagation Delay to a Logical "1" from B Port to A Port            | CD = 0.4V, T/R = 0.4V (Figure A)<br>R1 = 1k, R2 = 5k, C1 = 30 pF                                                                     |     | 13       | 18       | ns       |
| tPLZA              | Propagation Delay from a Logical "0" to TRI-STATE from CD to A Port | B0 to B7 = 0.4V, T/R = 0.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 15 pF                                                                | 1   | 11       | 15       | ns       |
| t <sub>PHZA</sub>  | Propagation Delay from a Logical "1" to TRI-STATE from CD to A Port | B0 to B7 = 2.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 0, R5 = 1k, CR = 15 pF                                                   |     | 8        | 15       | ns       |
| t <sub>PZLA</sub>  | Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port | B0 to B7 = 0.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 30 pF                                                   |     | 27       | 35       | ns       |
| t <sub>PZHA</sub>  | Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port | B0 to B7 = 2.4V, T/R = 0.4V (Figure C)<br>S3 = 0, R5 = 5k, C4 = 30 pF                                                                |     | 19       | 25       | ns       |
| B PORT D           | PATA/MODE SPECIFICATIONS                                            |                                                                                                                                      |     |          | - 1      |          |
| tPDHLB             | Propagation Delay to a Logical "0" from<br>A Port to B Port         | CD = 0.4V, $T/\overline{R}$ = 2.4V (Figure A)<br>R1 = 100 $\Omega$ , R2 = 1k, C1 = 300 pF<br>R1 = 667 $\Omega$ , R2 = 5k, C1 = 45 pF |     | 18<br>11 | 23<br>18 | ns<br>ns |
| <b>t</b> PDLHB     | Propagation Delay to a Logical "1" from<br>A Port to B Port         | CD = 0.4V, T/R = 2.4V (Figure A)<br>R1 = 100Ω, R2 = 1k, C1 = 300 pF<br>R1 = 667Ω, R2 = 5k, C1 = 45 pF                                |     | 16<br>11 | 23<br>18 | ns<br>ns |

### AC Electrical Characteristics $V_{CC} = 5V$ , $T_A = 25$ °C (Continued)

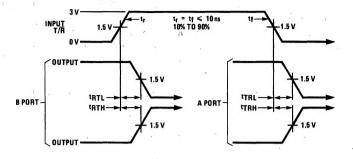
| Symbol            | Parameter                                                                    | Conditions                                                                                                                               | Min | Тур      | Max      | Units    |
|-------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----------|----------|
| B PORT            | DATA/MODE SPECIFICATIONS (Continued)                                         |                                                                                                                                          |     |          |          |          |
| t <sub>PLZB</sub> | Propagation Delay from a Logical "0" to<br>TRI-STATE from CD to B Port       | A0 to A7 = 0.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 15 pF                                                       | !   | 13       | 18       | ns       |
| t <sub>PHZB</sub> | Propagation Delay from a Logical "1" to TRI-STATE from CD to B Port          | A0 to A7 = 2.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 0, R5 = 1k, C4 = 15 pF                                                       |     | 8        | 15       | ns       |
| t <sub>PZLB</sub> | Propagation Delay from TRI-STATE to a Logical "0" from CD to B Port          | A0 to A7 = 0.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 1, R5 = 100 $\Omega$ , C4 = 300 pF<br>S3 = 1, R5 = 667 $\Omega$ , C4 = 45 pF |     | 32<br>16 | 40<br>22 | ns<br>ns |
| t <sub>РZНВ</sub> | Propagation Delay from TRI-STATE to<br>a Logical "1" from CD to B Port       | A0 to A7 = 2.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 0, R5 = 1k, C4 = 300 pF<br>S3 = 0, R5 = 5k, C4 = 45 pF                       |     | 26<br>14 | 35<br>22 | ns<br>ns |
| TRANSM            | IT/RECEIVE MODE SPECIFICATIONS                                               |                                                                                                                                          |     |          |          |          |
| t <sub>TRL</sub>  | Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port | CD = 0.4V (Figure B)<br>S1 = 0, R4 = $100\Omega$ , C3 = 5 pF<br>S2 = 1, R3 = 1k, C2 = 30 pF                                              |     | 30       | 40       | ns       |
| t <sub>TRH</sub>  | Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port | CD = 0.4V, (Figure B)<br>S1 = 1, R4 = $100\Omega$ , C3 = 5 pF<br>S2 = 0, R3 = 5k, C2 = 30 pF                                             |     | 28       | 40       | ns       |
| t <sub>RTH</sub>  | Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port | CD = 0.4V (Figure B)<br>S1 = 0, R4 = 1k, C3 = 300 pF<br>S2 = 1, R3 = 300Ω, C2 = 5 pF                                                     |     | 28       | 40       | ns       |


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for  $V_{CC} = 5V$  and  $T_A = 25^{\circ}C$ .

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.


### **Switching Time Waveforms and AC Test Circuits**



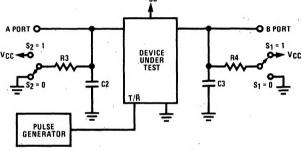
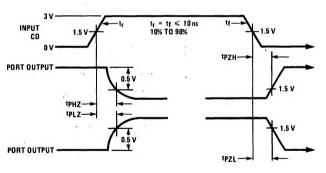

Note: C1 includes test fixture capacitance.

FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

### **Switching Time Waveforms and AC Test Circuits (Continued)**




TL/F/8793-5



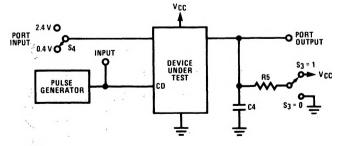

Note: C2 and C3 include test fixture capacitance.

FIGURE B. Propagation Delay from T/R to A Port or B Port



TL/F/8793-7

TL/F/8793-6



TL/F/8793-8

Note: C4 includes test fixture capacitance.

Port input is in a fixed logical condition. See AC table.

FIGURE C. Propagation Delay to/from TRI-STATE from CD to A Port or B Port