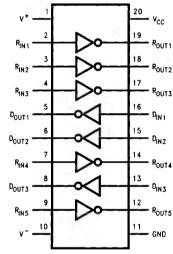
DS14185 EIA/TIA-232 3 Driver x 5 Receiver

General Description

The DS14185 is a three driver, five receiver device which conforms to the EIA/TIA-232-E standard.

The flow-through pinout facilitates simple non-crossover board layout. The DS14185 provides a one-chip solution for the common 9-pin serial RS-232 interface between data terminal and data communications equipment.

Features


- Replaces one 1488 and two 1489s
- Conforms to EIA/TIA-232-E
- 3 drivers and 5 receivers
- Flow through pinout
- Failsafe receiver outputs
- 20-pin SOIC package
- LapLink® compatible -200 kbps data rate

Connection Diagram

SOIC 20 - v_{cc} -R_{OUT 1} RIN2 -R_{OUT2} R_{OUT3} DOUTT - D_{IN 1} -D_{IN 2} DOUT 2 RIN4 ROUT4 -D_{IN3} DOUTS --Routs RIN5 - GND

Order Number DS14185WM See NS Package M20B

Functional Diagram

TL/F/11938-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Office/Distributors for avail	ability and specifications.
Supply Voltage (V _{CC})	+ 7V
Supply Voltage (V+)	+ 15V
Supply Voltage (V-)	-15V
Driver Input Voltage	0V to V _{CC}
Driver Output Voltage (Power	Off) ± 15V
Receiver Input Voltage	±25V
Receiver Output Voltage (ROL	υτ) 0V to V _{CC}
Maximum Package Power Dis	sipation @ +25°C
M Package	1488 mW
Derate M Package	11.9 mW/°C above + 25°C

		a .
Storage Temperature Range	-65°C to	+ 150°C
Lead Temperature Range (Soldering, 4 se	conds)	+ 260°C
ESD Ratings (HBM, 1.5 kΩ, 100 pF)		≥1.5 kV

Recommended Operating Conditions

Supply Voltage (V _{CC})	Min +4.75	Typ +5.0	Max + 5.25	Units V
Supply Voltage (V+)	+9.0	+ 12.0	+ 13.2	V
Supply Voltage (V-)	-13.2	- 12.0	-9.0	V
Operating Free Air Temperature (T _A)	0	25	70	°C

Electrical Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified (Note 2).

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE CI	HARACTERISTICS						
lcc	V _{CC} Supply Current	No Load, All Inputs at +	-5V		24	30	mA
1+	V+ Supply Current	No Load, All Driver	$V^{+} = 9V, V^{-} = -9V$		11.8	15	mA
	(Note 2)	Inputs at 0.8V or +2V	$V^+ = 13.2V, V^- = -13.2V$		17.7	22	mA
1-	V- Supply Current	All Receiver Inputs at 0.8V or 2.4V.	$V^{+} = 9V, V^{-} = -9V$		- 18.5	-22	mA
	(Note 2)		$V^+ = 13.2V, V^- = -13.2V$		-24	-28	mA
DRIVER C	HARACTERISTICS						
V _{IH}	High Level Input Voltage			2.0			>
VIL	Low Level Input Voltage					0.8	V
lн	High Level Input Current (Note 2)	V _{IN} = 5V				10	μΑ
l _{IL}	Low Level Input Current (Note 2)	V _{IN} = 0V			-1.24	-1.5	mA
V _{OH}	High Level Output Voltage (Note 2)	$R_L = 3 k\Omega, V_{IN} = 0.8V,$ $V^+ = 9V, V^- = -9V$		6	7		٧
- 41		$R_L = 3 k\Omega, V_{IN} = 0.8V,$ $V^+ = +12V, V^- = -12V$		8.5	10		٧
		$R_L = 7 k\Omega, V_{IN} = 0.8V,$ $V^+ = +13.2V, V^- = -13.2V$		10	11.5		٧
V _{OL}	Low Level Output Voltage (Note 2)	$R_L = 3 k\Omega, V_{IN} = 2V,$ $V^+ = 9V, V^- = -9V$			-7	-6	٧
		$R_L = 3 k\Omega, V_{IN} = 2V,$ $V^+ = +12V, V^- = -12V$			-8	-7.5	v
		$R_L = 7 \text{ k}\Omega, V_{\text{IN}} = 0.8 \text{V},$ $V^+ = +13.2 \text{V}, V^- = -13.2 \text{V}$			-11	-10	v
los+	Output High Short Circuit Current (Note 2)	$V_{O} = 0V, V_{IN} = 0.8V$		-6	-13	-18	mA
los-	Output Low Short Circuit Current (Note 2)	$V_{O} = 0V, V_{IN} = 2.0V$		6	13	18	mA
Ro	Output Resistance	$-2V \le V_0 \le +2V,$ $V^+ = V^- = V_{CC} = 0$	V	300			Ω
		$-2V \le V_O \le +2V$, $V^+ = V^- = V_{CC} = Open Ckt$		300			Ω

Electrical Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified (Note 2). (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIVER	CHARACTERISTICS					
V _{TH}	Input High Threshold (Recognized as a High Signal)	$V_{O} \le 0.4 V$, $I_{O} = 3.2 \text{ mA}$		2.0	2.4	v
V _{TL}	Input Low Threshold (Recognized as a Low Signal)	$V_{O} \ge 2.5V$, $I_{O} = -0.5 \text{ mA}$	0.8	1.0		٧
R _{IN}	Input Resistance	V _{IN} = ±3V to ±15V	3.0	4.1	7.0	kΩ
IN	Input Current (Note 2)	V _{IN} = +15V	2.1	4.1	5.0	mA
		V _{IN} = +3V	0.43	0.7	1	mA
		V _{IN} = -15V	-5.0	-4.1	-2.1	mA
		$V_{IN} = -3V$	-1	-0.65	-0.43	mA
V _{OH}	High Level Output Voltage (Note 7)	$I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V$	2.6	4		V
		$I_{OH} = -10 \mu\text{A}, V_{IN} = -3V$	4.0	4.9		V
		I _{OH} = -0.5 mA, V _{IN} = Open Circuit	2.6	4		V
		$I_{OH} = -10 \mu A$, $V_{IN} = Open Circuit$	4.0	4.9		٧
VoL	Low Level Output Voltage	I _{OL} = 3.2 mA, V _{IN} = +3V		0.2	0.4	٧
Iosa	Short Circuit Current (Note 2)	$V_O = 0V, V_{IN} = 0V$	-4	-2.7	-1.7	mA

Switching Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified (Note 2).

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER CH	HARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_L = 3 k\Omega$, $C_L = 50 pF$ (Figures 1 and 2)		90	350	ns
t _{PLH}	Propagation Delay Low to High			220	350	ns
t _r , t _f	Output Slew Rate (Note 8)			50		ns
RECEIVER	CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_L = 1.5 k\Omega, C_L = 15 pF$		60	100	ns
t _{PLH}	Propagation Delay Low to High	(includes fixture plus probe),		100	160	ns
t _r	Rise Time	(Figures 3 and 4)		87	175	ns
t _f	Fall Time	5		15	50	ns

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value (-6.8V) is more negative.

Note 3: All typicals are given for: $V_{CC} = +5.0V$, $V^+ = +12.0V$, $V^- = -12V$, $T_A = +25^{\circ}C$.

Note 4: Only one driver output shorted at a time.

Note 5: Generator characteristics for driver input: f = 64 kHz (128 kbits/sec), $t_f = t_f < 10$ ns, $V_{iH} = 3V$, $V_{iL} = 0V$, duty cycle = 50%.

Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbits/sec), $t_r = t_f = 200 \text{ ns}$, $V_{IL} = 3V$, $V_{IL} = -3V$, duty cycle = 50%.

Note 7: If receiver inputs are unconnected, receiver output is a logic high.

Note 8: Refer to typical curves. Driver output slew rate is measured from the +3.0V to the -3.0V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/ μ s maximum slew rate, a minimum load capacitance of 390 pF is recommended.

Parameter Measurement Information

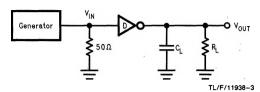


FIGURE 1. Driver Propagation Delay and Transition Time Test Circuit (Note 5)

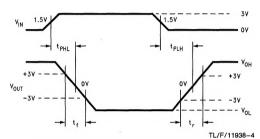


FIGURE 2. Driver Propagation Delay and Transition
Time Waveforms Slew Rate (SR) = 6V/(t_r or t_f)

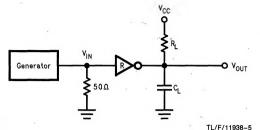


FIGURE 3. Receiver Propagation Delay and Transition Time Test Circuit (Note 6)

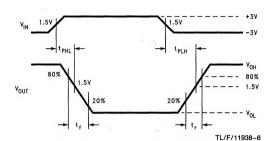


FIGURE 4. Receiver Propagation Delay and Transition Time Waveform

Pin Descriptions

Pin #	Name	Description
13, 15, 16	D _{IN}	TTL Level Driver Inputs
5, 6, 8	D _{OUT}	Driver Output Pins, RS-232 Levels
2, 3, 4, 7, 9	R _{IN}	Receiver Input Pins, RS-232 Levels
12, 14, 17, 18, 19	R _{OUT}	Receiver Output Pins, TTL Levels
11	GND	Ground
1	V+	Positive Power Supply Pin (+9.0 \leq V + \leq +13.2)
10	V-	Negative Power Supply Pin ($-9.0 \le V^- \le -13.2$)
20	V _{CC}	Positive Power Supply Pin (+5V ±5%)

Applications Information

In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS, and RI.

The DS14185 is a 3 \times 5 Driver/Receiver and offers a single chip solutuion for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

LapLink COMPATIBILITY

The DS14185 can easily provide 128 kbps data rate under maximum driver load conditions of $C_L=2500$ pF and $R_L=3$ k Ω , while power supplies are:

$$V_{CC} = 4.75V, V^{+} = 10.8V, V^{-} = -10.8V$$

MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V+ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V- terminal. Refer to typical curves of V_{OUT}/I_{OUT} . Typical mouse specifications are:

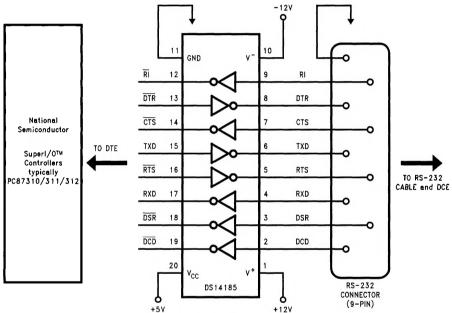
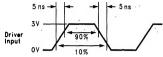
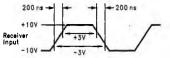
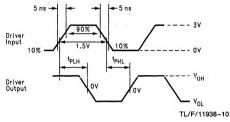
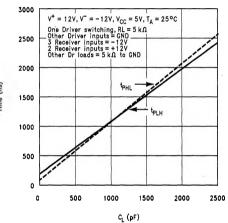




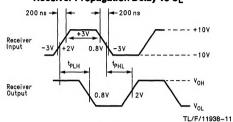
FIGURE 5. Typical DTE Application

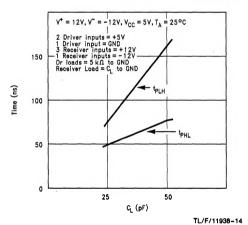
Typical Performance Characteristics



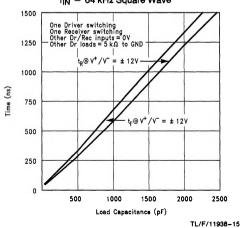

TL/F/11938-8

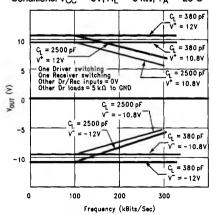
TI /F/11938-9


The above input waveforms were used to generate all Typical AC Characteristics.



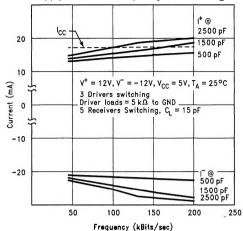
Receiver Propagation Delay vs CL




TL/F/11938-12

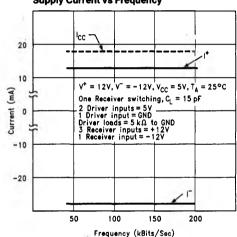
Driver Output Siew Rate between +3V and -3V vs Load Capacitance

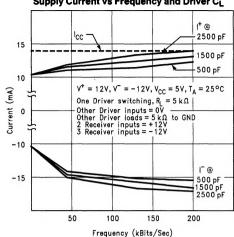
Conditions: $V_{CC} = 5V$, $R_L = 5 k\Omega$, $T_A = 25$ °C, $f_{|N} = 64$ kHz Square Wave



Driver Output Voltage vs Frequency and C_L Conditions: $V_{CC} = 5V$, $R_L = 5 k\Omega$, $T_A = 25^{\circ}C$

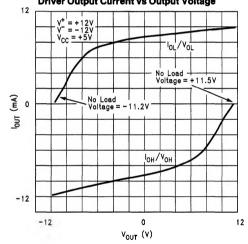
Typical Performance Characteristics (Continued)




TL/F/11938-13

TL/F/11938-18

Supply Current vs Frequency



Supply Current vs Frequency and Driver CL

TL/F/11938-17

Driver Output Current vs Output Voltage

