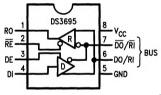
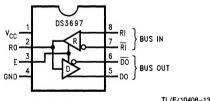
DS3695/DS3695T/DS3696/DS3696T/DS3697/DS3698 Multipoint RS485/RS422 Transceivers/Repeaters

General Description

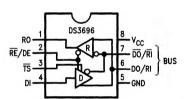
The DS3695, DS3696, DS3697 and DS3698 are high speed differential TRI-STATE® bus/iine transceivers/repeaters designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission.


The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of $\pm 12V$ to $\pm 7V$. Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696 and DS3698 provide an output pin TS (thermal shutdown) which reports the occurrence of the thermal shutdown of the device. This is an "open collector" pin with an internal 10 k Ω pull-up resistor. This allows the line fault outputs of several devices to be wire OR-ed.

Both AC and DC specifications are guaranteed over the 0°C to 70°C temperature and 4.75V to 5.25V supply voltage range.


Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 15 ns driver propagation delays with 2 ns skew (typical)
- Single +5V supply
- -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis


Connection and Logic Diagrams

TL/F/10408-1

Top View

Top View

TL/F/10408-12

 $\begin{array}{c|c} V_{CC} & 1 & DS3698 & 8 & RI \\ \hline \overline{1S} & 2 & \overline{R} & \overline{R} & \overline{R} \\ \hline S & 0 & \overline{DO} \end{array} \\ \begin{array}{c} BUS \text{ IN} \\ \hline BUS \text{ OUT} \\ \hline \\ \hline TOP \text{ View} \\ \end{array}$

Order Number DS3695N, DS3696N, DS3697N, DS3698N, DS3695TN, DS3696TN, DS3695TJ or DS3696TJ See NS Package Number J08A or N08E

Note: TS pin was LF (Line Fault) in previous datasheets and reports the occurrence of a thermal shutdown of the device.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V_{CC} 7V
Control Input Voltages 7V
Driver Input Voltage 7V
Driver Output Voltages + 15V/-10V
Receiver Input Voltages

(DS3695, DS3696) + 15V/-10V
Receiver Common Mode Voltage

(DS3697, DS3698) ±25V
Receiver Output Voltage 5.5V

Continuous Power Dissipation @ 25°C N Package

Storage Temperature Range Lead Temperature (Soldering, 4 sec.) 1.07W (Note 4) -65°C to +150°C

260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	٧
Bus Voltage	-7	+12	٧
Operating Free Air Temp. (TA)			
Commercial	0	+70	°C
Industrial	-40	+85	°C

Electrical Characteristics $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.75V < V_{CC} < 5.25V$ unless otherwise specified (Notes 2 & 3)

Symbol	Paramo	eter	Conditions I _O = 0			Тур	Max	Units
V _{OD1}	Differential Driver Out Voltage (Unloaded)	tput					5	٧
V _{OD2}	Differential Driver Out	tput	(Figure 1)	$R = 50\Omega$; (RS-422) (Note 5)	2			٧
	Voltage (with Load)		1	$R = 27\Omega; (RS-485)$	1.5	1		٧
ΔV _{OD}	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States			*	A .		0.2	>
v _{oc}	Driver Common Mode	Output Voltage	(Figure 1)	$R = 27\Omega$			3.0	V
Δ V _{OC}	Change in Magnitude Common Mode Outpo for Complementary O	ut Voltage		* 00	٠.	41	0.2	٧
VIH	Input High Voltage				2			٧
VIL	Input Low Voltage		DI, DE,	1			0.8	٧
VCL	Input Clamp Voltage		E, RE/DE	$I_{IN} = -18 \text{ mA}$	± (m	8	-1.5	٧
(_{IL}	Input Low Current			V _{IL} = 0.4V			-200	μА
Ιн	Input High Current			V _{IH} = 2.4V			20	μА
IN	Input Current	DO/RI, DO/RI	V _{CC} = 0V or 5.25V	V _{IN} = 12V			+1.0	mA
		RI, RĪ	RE/DE or DE = 0V	$V_{IN} = -7V$			-0.8	mA
lozo	TRI-STATE Current DS3697 & DS3698	DO, DO	V _{CC} = 0V or 5.25V, E = 0V -7V < V _O < +12V				±100	μΑ
V _{TH}	Differential Input Thre Voltage for Receiver	eshold	-7V ≤ V _{CM} ≤ +12	V	-0.2		+0.2	٧
ΔV_{TH}	Receiver Input Hyster	resis	V _{CM} = 0V			70		m۷
VoH	Receiver Output High	Voltage	$l_{OH} = -400 \mu A$		2.4			٧
VOL	Output Low Voltage	RO	I _{OL} = 16 mA (Note 5	5)	31		0.5	٧
		TS	I _{OL} = 8 mA	100			0.45	V
lozr	OFF-State (High Impo	· ·	$V_{CC} = Max$ $0.4V \le V_O \le 2.4V$				±20	μΑ
R _{IN}	Receiver Input Resis	tance	$-7V \le V_{CM} \le +12$	V	12			kΩ
loc	Supply Current		No Load Driver Outputs Enabled			42	60	mA
			(Note 5)	Driver Outputs Disabled		27	40	mA

Electrical Characteristics (Continued) $0^{\circ}C \le T_A \le +70^{\circ}C$, 4.75V $\le V_{CC} \le 5.25$ V unless otherwise specified (Notes 2 & 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
losp	Driver Short-Circuit Output Current	V _O = -7V (Note 5)			-250	mA
		V _O = +12V (Note 5)			+250	mA
Iosa	Receiver Short-Circuit Output Current	$V_O = 0V$	-15		-85	mA

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise

Note 3: All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 4: Derate linearly at 11.1 mW/°C to 570 mW at 70°C.

Note 5: All limits for which Note 5 is applied must be derated by 10% for DS3695T and DS3696T. Other parameters remain the same for this extended temperature range device ($-40^{\circ}C \le T_A \le +85^{\circ}C$).

Switching Characteristics

 0° C \leq T_A \leq +70°C, 4.75V < V_{CC} < 5.25V unless otherwise specified (Notes 3, 6)

Receiver Switching Characteristics (Figures 2, 3 and 4)

Symbol	Conditions	Min	Тур	Max	Units
t _{PLH}	C _L = 15 pF	15	25	37	ns
t _{PHL}	S1 and S2 Closed	15	25	37	ns
t _{PLH} -t _{PHL}	Olosed	0			ns
t _{PLZ}	C _L = 15 pF, S2 Open	5	12	16	ns
t _{PHZ}	C _L = 15 pF, S1 Open	5	12	16	ns
t _{PZL}	C _L = 15 pF, S2 Open	7	15	20	ns
t _{PZH}	C _L = 15 pF, S1 Open	7	15	20	ns

Driver Switching Characteristics

Symbol	Conditions	Min	Тур	Max	Units
GLE ENDED CHARACTE	RISTICS (Figures 5, 6 and 7)				
^t PLH	$R_{\text{LDIFF}} = 60\Omega$ $C_{\text{L1}} = C_{\text{L2}} = 100 \text{ pF}$	9	15	22	ns
t _{PHL}	$C_{L1} = C_{L2} = 100 pF$	9	15	22	ns
tskew tplh-tphL			2	8	ns
t _{PLZ}	C _L = 15 pF, S2 Open	7	15	30	ns
t _{PHZ}	C _L = 15 pF, S1 Open	7	15	30	ns
t _{PZL}	C _L = 100 pF, S2 Open	30	35	50	ns
t _{PZH}	C _L = 100 pF, S1 Open	30	35	50	ns
ERENTIAL CHARACTE	RISTICS (<i>Figures 5</i> and 8)				
t _r , t _f	$R_{L_{DIFF}} = 60\Omega$ $C_{1,1} = C_{1,2} = 100 \text{ pF}$	6	10	18	ns

Note 6: Switching Characteristics apply for DS3695, DS3695T, DS3696, DS3696T, DS3697 only.

AC Test Circuits and Switching Waveforms

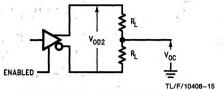


FIGURE 1. Driver $V_{\mbox{\scriptsize OD}}$ and $V_{\mbox{\scriptsize OC}}$

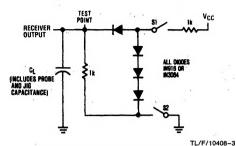
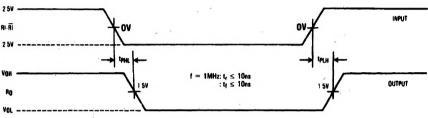



FIGURE 2. Receiver Propagation Delay Test Circuit

TL/F/10408-4

Note: Differential input voltage may be realized by grounding RI and pulsing RI between +2.5V and -2.5V.

FIGURE 3. Receiver Input-to-Output Propagation Delay Timing

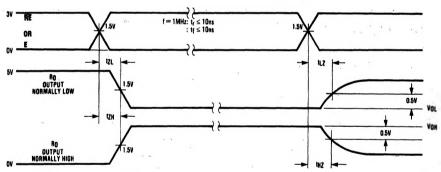
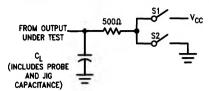
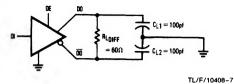




FIGURE 4. Receiver Enable/Disable Propagation Delay Timing

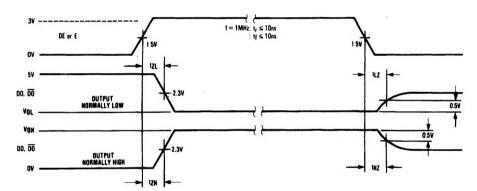
TL/F/10408-5

AC Test Circuits and Switching Waveforms (Continued)



TL/F/10408-6

Note: Unless otherwise specified the switches are closed.


FIGURE 5. Driver Propagation Delay and Transition Time Test Circuits

TL/F/10408-8

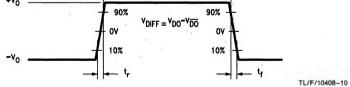

Note: tpLH and tpHL are measured to the respective 50% points. tsKEW is the difference between propagation delays of the complementary outputs.

FIGURE 6. Driver Input-to-Output Propagation Delay Timing (Single-Ended)

TL/F/10408-9

FIGURE 7. Driver Enable/Disable Propagation Delay Timing

FIGURE 8. Driver Differential Transition Timing

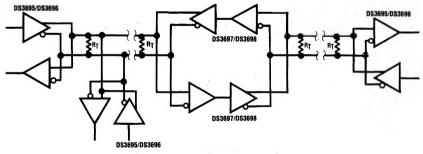
4-7

Function Tables

DS3695/DS3696 Transmitting

	Inputs		Thermal	Outputs		
RE	DE	DI	Shutdown	DO	DO	TS* (DS3696 Only)
X	1	1	OFF	0	1	Н
Х	1	0	OFF	1	0	Н
X	0	X	OFF	Z	z	н
X	1	X	ON	Z	Z	L

DS3695/DS3696 Receiving

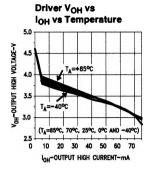

	Inputs			Outputs
RE	DE	RI-RI	RO	TS* (DS3696 Only)
0	0	≥ +0.2V	1	н
0	0	≤ -0.2V	0	н
1	0	x	z	н

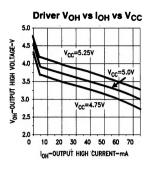
DS3697/DS3698

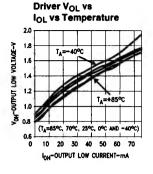
	Inputs	Thermal	Outputs			1.00
E	RI-RĪ	Shutdown	DO	DO	RO (DS3697 Only)	TS* (DS3698 Only)
1	≥ +0.2V	OFF	0	1	1)	н
1	≤ -0.2V	OFF	1	0	0	н
0	X	OFF	Z	Z	Z	н
1	≥ +0.2V	ON	Z	Z	1	L
1	≤ -0.2V	ON	Z	Z	0	L

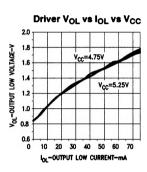
X-Don't care condition

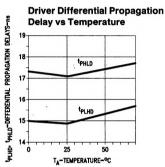
Typical Application

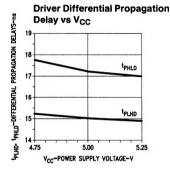

TL/F/10408-11

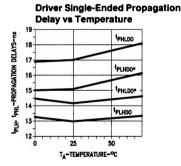

Note: Repeater control logic not shown, see AN-702.

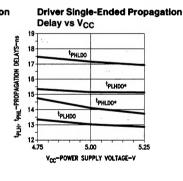

Z-High impedance state

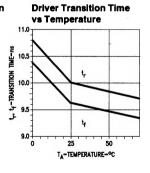

^{*}TS is an "open collector" output with an on-chip 10 k Ω pull-up resistor that reports the occurrence of a thermal shutdown of the device.

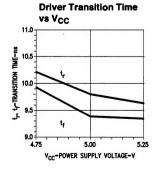

Typical Performance Characteristics

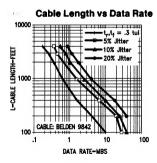


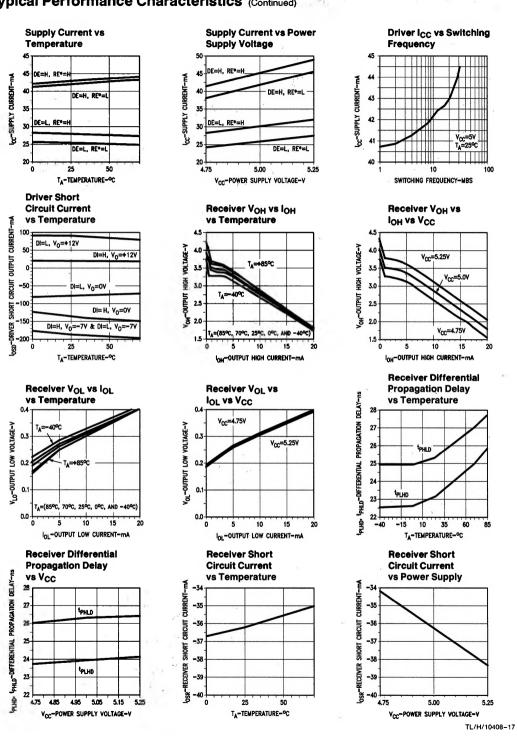


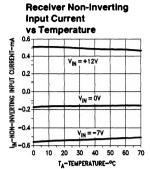


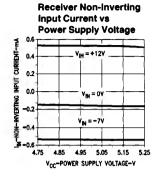


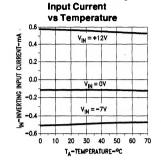




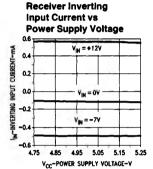


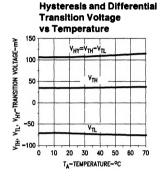


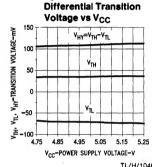

TL/H/10408-16


Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)







Hysteresis and

Receiver Inverting

