PRELIMINARY

National Semiconductor

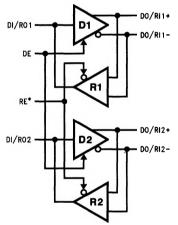
DS36C200 Dual High Speed Bi-Directional Differential Transceiver


General Description

The DS36C200 is a dual transceiver device optimized for high data rate and low power applications. This device provides a single chip solution for a dual high speed bi-directional interface. Also, both control pins may be routed together for single bit control of datastreams. Both control pins are adjacent to each other for ease of routing them together. The DS36C200 is compatible with IEEE 1394 physical layer and may be used as an economical solution with some considerations. Please reference the application information on 1394 for more information. The device is in a 14-lead small outline package. The differential driver outputs provides low EMI with its low output swings typically 210 mV. The receiver offers \pm 100 mV threshold sensitivity, in addition to common mode noise protection.

Features

- Optimized for DSS to DVHS interface link
- IEEE 1394 signaling
- Operates above 100 Mbps
- Bi-directional transceivers
- 14-lead SOIC package
- Ultra low power dissipation
- ± 100 mV receiver sensitivity
- Low differential output swing typical 210 mV


Connection Diagram

TL/F/12621-1

Order Number DS36C200M See NS Package Number M14A

Functional Diagram

TL/F/12621-2

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
Enable Input Voltage (DE, RE*)	-0.3V to (V _{CC} + 0.3V)
Voltage (DI/RO)	-0.3V to (V _{CC} + 0.3V)
Voltage (DO/RI±)	-0.3V to (V _{CC} + 0.3V)
Maximum Package Power Dissi	pation @+25°C
M Package	TBD mW
Derate M Package	TBD mW/°C above +25°C
Storage Temperature Range	-65°C to +150°C

Lead Temperature Range (Soldering, 4 sec.) + 260°C ESD Rating (HBM 1.5 kΩ, 100 pF) (Note 4) ≥2.5 kV

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	+ 4.5	+ 5.0	+ 5.5	v
Receiver Input Voltage	0		2.4	v
Operating Free Air			Xy I	
Temperature (T _A)	0	25	70	°C

Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified (Notes 2, 3 and 7)

Symbol	Parameter Conditions		Pin	Min	Тур	Max	Units
DIFFERENT	IAL DRIVER CHARACTERISTI	CS		+			
V _{OD}	Output Differential Voltage	$R_L = 55\Omega$		172	210	TBD	m۷
ΔV _{OD}	V _{OD} Magnitude Change	Figure 1		0	4	35	m∨
VOH	Output High Voltage				1.36	1.6	V
VoL	Output Low Voltage	÷		0.9	1.15		V
VOS	Offset Voltage		DO+, DO-	0.9	1.25	1.6	V
ΔV _{OS}	Offset Magnitude Change			0	5	25	mV
lozd	TRI-STATE® Leakage	$V_0 = V_{CC}$ or GND		0	±1	±10	μA
IOXD	Power-Off Leakage	$V_0 = V_{CC} = GND = 0V$		0	±1	±10	μΑ
IOSD	Output Short Circuit Current				-6	-9	mA
IFFERENT	IAL RECEIVER CHARACTERIS	TICS					
V _{TH}	Input Threshold High					+100	mV
V _{TL}	Input Threshold Low		RI+, RI-	- 100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V$, or 0V		- 10	±1	+ 10	μA
V _{OH}	Output High Voltage	I _{OH} = −400 μA		3.8	4.9		v
	- ÷	Inputs Open		3.8	4.9		V
		Inputs Terminated, $R_t = 55\Omega$	RO	3.8	4.9		v
		Inputs Shorted, V _{OD} = 0V			4.9		v
VOL	Output Low Voltage	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -200 \text{ mV}$			0.3	0.5	V
IOSR	Output Short Circuit Current	V _{OUT} = 0V		-15	-60	- 100	mA

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Unita
DEVICE CHA	RACTERISTICS			-			
VIH	Input High Voltage			2.0		Vcc	v
VIL	Input Low Voltage			GND		0.8	V
IJн	Input High Current	$V_{IN} = V_{CC} \text{ or } 2.4 V$	DI, DE RE*		±1	±10	μA
l _{IL}	Input Low Current	V _{IN} = GND or 0.4V			±1	±10	μA
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$		- 1.5	-0.8		V
ICCD	Power Supply Current	No Load; DE = RE* = V _{CC}			3	7	mA
		$R_L = 55\Omega; DE = RE^* = V_{CC}$	V _{CC}		10	TBD	mA
ICCR		$DE = RE^* = 0V$			5	7	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and V_{ID} . Note 3: All typicals are given for $V_{CC} = +5.0V$ and $T_A = +25^{\circ}C$.

Note 4: ESD Rating: HBM (1.5 kΩ, 100 pF) ≥ 2.5 kV

EIAJ (0Ω, 200 pF) ≥ TBD

Note 5: CL includes probe and fixture capacitance.

Note 6: Generator waveform for all tests unless otherwise specified: f = 1 MHz, $Z_O = 50\Omega$, $t_f \le 1 \text{ ns}$, $t_f \le 1 \text{ ns}$ (0%-100%).

Note 7: The DS36C200 is a current mode device and only function with datasheet specification when a resistive load is applied to the drivers outputs.

Switching Characteristics Over supply voltage and operating temperature ranges, unless otherwise specified (Note 5)

Symbol	Paraméter	Conditions	Min	Тур	Max	Units
IFFERENTI	AL DRIVER CHARACTERISTICS	·			- 11 - 11	
^t PHLD	Differential Propagation Delay High to Low	R _L = 55Ω, C _L = 50 pF	1.5	. 3.4	6	ns
^t PLHD	Differential Propagation Delay Low to High	(Figures 2 and 3)	1.5	3.50	6	ns
tsKD	Differential Skew tPHLD-tPLHD		0.1	0.1	2	ns
tTLH	Transition Time Low to High		0	0.5	2	ns
t THL	Transition Time High to Low		0	0.5	2	ns
^t PHZ	Disable Time High to Z	$R_L = 55\Omega$	0.3	5	20	ns
tPLZ	Disable Time Low to Z	(Figures 4 and 5)	0.3	5	20	ns
t _{PZH}	Enable Time Z to High		0.3	10	30	ns
tPZL	Enable Time Z to Low		0.3	10	30	ns
IFFERENTI	AL RECEIVER CHARACTERISTICS					
^t PHLD	Differential Propagation Delay High to Low	$C_{L} = 50 pF, V_{ID} = 200 mV$	1.5	3.4	6	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figures 6 and 7)	1.5	3.5	6	ns
tSKD	Differential Skew tPHLD-tPLHD		0.1	0.1	2	ns
t _r	Rise Time	*	0	0.5	2.5	ns
tr	Fall Time		0	0.5	2.5	ns
t _{PHZ}	Disable Time High to Z	C _L = 5 pF	1	10	20	ns
t _{PLZ}	Disable Time Low to Z	(Figures 8 and 9)	1	10	20	ns
t _{PZH}	Enable Time Z to High		0.3	10	30	ns
t _{PZL}	Enable Time Z to Low		0.3	10	30	ns

TL/F/12621-3

TL/F/12621-4

Parameter Measurement Information

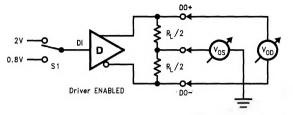


FIGURE 1. Differential Driver DC Test Circuit



FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

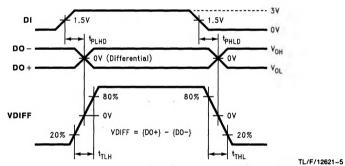
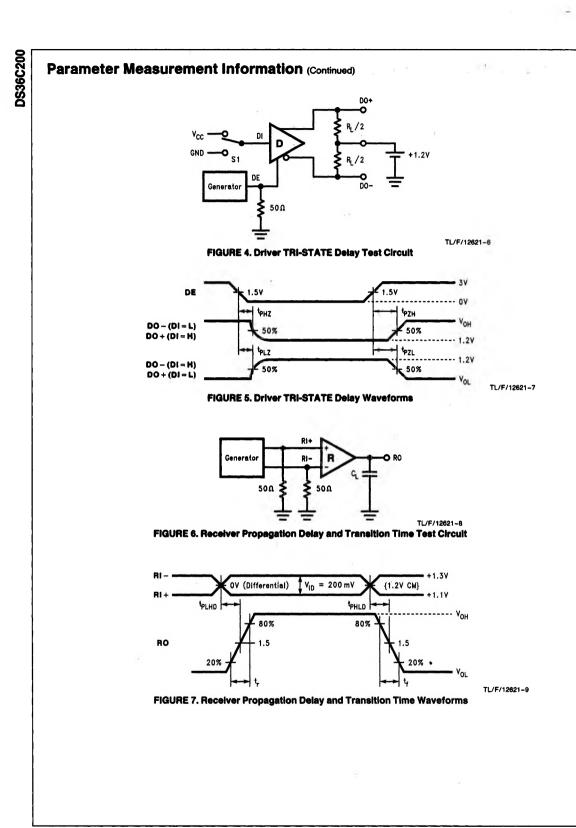



FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

Parameter Measurement Information (Continued)

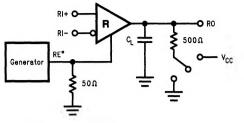


FIGURE 8. Receiver TRI-STATE Delay Test Circuit

TL/F/12621-10

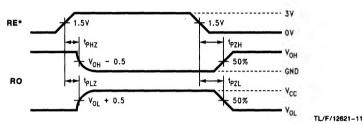


FIGURE 9. Receiver TRI-STATE Delay Waveforms

1

DS36C200

Application Information

TRUTH TABLES

The DS36C200 has two enable pins DE and RE*, however, the driver and receiver should never be enabled simultaneously. Enabling both could cause multiple channel contention. It is recommended to route the enables together on the PC board. This will allow a single bit [DE/RE*] to control the chip. This DE/RE* bit toggles the DS36C200 between Receive mode and Transmit mode. When the bit is asserted HIGH the device is in Transmit mode. When the bit is asserted LOW the device is in Receive mode. The mode determines the function of the I/O pins: DI/RO, DO/RI+,

Receive Mode					
Input(s)		input/Output			
DE	RE*	[RI+] — [RI—]	RO		
٢	L	> +100 mV	н		
L	L	< – 100 mV	L		
L	L	100 mV > & > −100 mV	Х		

and DO/RI-. Please note that some of the pins have been identified by its function in the corresponding mode in the three tables below. For example, in Transmit mode the DO/RI+ pin is identified as DO+. This was done for clarity in the tables only and should not be confused with the pin identification throughout the rest of this document. Also note that a logic low on the DE/RE* bit corresponds to a logic low on both the DE pin and the RE* pin. Similarly, a logic high on the DE/RE* bit corresponds to a logic high on both the DE pin and the RE* pin.

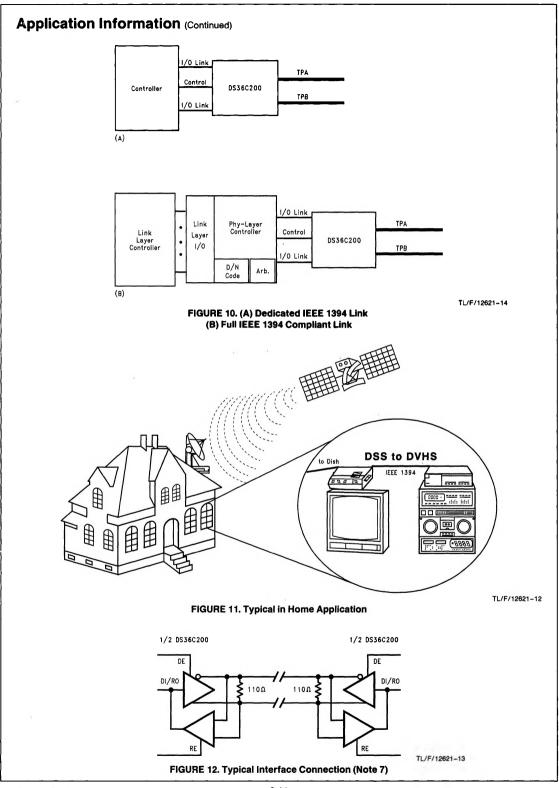
Transmit Mode

Inp	out(s)	Inpu		
DE	RE*	DI	DO+	DO-
н	н	L	L	н
н	н	н	н	L
н	н	2 > & > 0.8	x	x

H = Logic high level

L = Logic low level

X = Indeterminant state


TABLE I. Device Pin Descriptions					
Pin #	Name (In mode only)	Mode	Description		
3	DE	Transmit	Driver Enable: When asserted low driver is disabled. And when asserted high driver is enabled.		
1, 7	DI		TTL/CMOS driver input pins		
10, 13	DO+		Noninverting driver output pin		
11, 12	DO-		Inverting driver output pin		
4	RE*	Receive	Receiver Enable: When asserted low receiver is enabled. And when asserted high receiver is disabled.		
1, 7	RO		Receiver output pin		
10, 13	Ri+		Positive receiver input pin		
11, 12	RI-		Negative receiver input pin		
5	GND	Transmit and	Ground pin		
2	V _{CC}	Receive	Positive power supply pin, $+5V \pm 10\%$		

TARLE I Device Pin Descriptions

IEEE 1394

The DS36C200 drives and receives IEEE 1394 physical layer signal levels. The current mode driver is cabpable of driving a 55 Ω load with V_{OD} between 172 mV and TBD mV. The DS36C200 is not designed to work with a link layer controller IC requiring full 1394 physical layer compliancy to the standard. No clock generator, no arbitration, and no encode/decode logic is provided with this device. For a 1394

link where speed sensing, bus arbitration, and other functions are not required, a controller and the DS36C200 will provide a cost effective, high speed dedicated link. This is shown in Figure 10A. In applications that require fully compliant 1394 protocol, a link layer controller and physical layer controller will be required as shown in Figure 10B. The physical layer controller supports up to three DC36C200 devices (not shown).

DS36C200

http://www.national.com