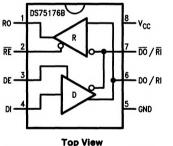


DS75176B/DS75176BT Multipoint RS-485/RS-422 Transceivers

General Description

The DS75176B is a high speed differential TRI-STATE® bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to −7V), for multipoint data transmission. In addition, it is compatible with RS-422.


The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of +12V to -7V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

DC specifications are guaranteed over the 0 to 70°C temperature and 4.75V to 5.25V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422.
- Small Outline (SO) Package option available for minimum board space.
- 22 ns driver propagation delays.
- Single +5V supply.
- -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus.
- Thermal shutdown protection.
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down.
- Pin out compatible with DS3695/A and SN75176A/B.
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus.
- 70 mV typical receiver hysteresis.

Connection and Logic Diagram

TL/F/8759-1

Order Number DS75176BN, DS75176BTN, DS75176BM or DS75176BTM See NS Package Number N08E or M08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V _{CC}	7V
Control Input Voltages	7V
Driver Input Voltage	7V
Driver Output Voltages	+15V/ -10V
Receiver Input Voltages (DS75176B)	+15V/ -10V
Receiver Output Voltage	5.5V
Continuous Power Dissipation @25°C	
for M Package	675 mW (Note 5)
for N Package	900 mW (Note 4)

Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering,	4 seconds) 260°C

Recommended Operating Conditions

	MIII	max	Units	
Supply Voltage, V _{CC}	4.75	5.25	V	
Voltage at Any Bus Terminal (Separate or Common Mode)	-7	+12	٧	
Operating Free Air Temperature TA				
DS75176B	0	+70	۰C	
DS75176BT	-40	+ 85	°C	
Differential Input Voltage,				
VID (Note 6)	-12	+12	V	

Electrical Characteristics (Notes 2 and 3)

 $0^{o}C \leq T_{A} \leq$ 70°C, 4.75V < V_{CC} < 5.25V unless otherwise specified

Symbol	Parameter		Conditions		Min	Тур	Max	Units
V _{OD1}	Differential Driver Output Voltage (Unloaded)		I _O = 0				5	V
V _{OD2}	Differential Driver Output		(Figure 1)	$R = 50\Omega$; (RS-422) (Note 7)	2			٧
	Voltage (with Load)			$R = 27\Omega$; (RS-485)	1.5			V
ΔV _{OD}	Change in Magnitude of Driver Differential Output Voltage For Complementary Output States						0.2	V
V _{OC}	Driver Common Mode Output Voltage		(Figure 1)	$R = 27\Omega$			3.0	V
Δ V _{OC}	Change in Magnitude of Drive Common Mode Output Voltag For Complementary Output States						0.2	٧
VIH	Input High Voltage				2			٧
VIL	Input Low Voltage]	DI, DE,				0.8	
V _{CL}	Input Clamp Voltage	RE, E		$I_{\text{IN}} = -18 \text{mA}$			-1.5	
l _{IL}	Input Low Current			$V_{IL} = 0.4V$			-200	μΑ
l _{IH}	Input High Current		V _{IH} = 2.4V				20	μА
I _{IN}	Input	DO/RI, DO/RI	$V_{CC} = 0V \text{ or } 5.25V$	V _{IN} = 12V			+1.0	mA
	Current		DE = 0V	$V_{ N} = -7V$			-0.8	mA
V _{TH}	Differential Input Threshold Voltage for Receiver		$-7V \le V_{CM} \le + 12V$	/	-0.2		+0.2	V
ΔV_{TH}	Receiver Input Hysteresis		$V_{CM} = 0V$			70		mV
VOH	Receiver Output High Voltage		$I_{OH} = -400 \mu\text{A}$		2.7			V
VOL	Output Low Voltage	RO	I _{OL} = 16 mA (Note 7)				0.5	V
loza	OFF-State (High Impedance) Output Current at Receiver		$V_{CC} = Max$ $0.4V \le V_O \le 2.4V$				± 20	μА
R _{IN}	Receiver Input Resistance		$-7V \le V_{CM} \le +12V$		12			kΩ
lcc	Supply Current		No Load Driver Outputs Enabled (Note 7) Driver Outputs Disabled				55	mA
							35	mA

Electrical Characteristics (Notes 2 and 3)

 $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C},\,4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IOSD	Driver Short-Circuit	$V_O = -7V$ (Note 7)			-250	mA
	Output Current	V _O = +12V (Note 7)			+ 250	mA
IOSR	Receiver Short-Circuit Output Current	V _O = 0V	15		85	mA

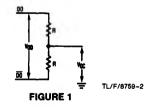
Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

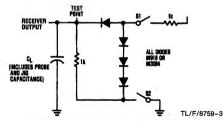
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 4: Derate linearly at 5.56 mW/°C to 650 mW at 70°C.

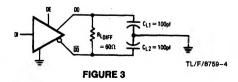
Note 5: Derate linearly @ 6.11 mW/°C to 400 mW at 70°C.

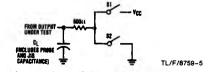

Note 6: Differential - Input/Output bus voltage is measured at the nonInverting terminal A with respect to the inverting terminal B.


Note 7: All worst case parameters for which note 7 is applied, must be increased by 10% for DS75176BT. The other parameters remain valid for $-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$.

Switching Characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

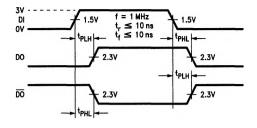
Symbol	Parameter	Conditions	Min	Тур	Max	Units
tpLH	Driver Input to Output	$R_{LDIFF} = 60\Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$		12	22	ns
t _{PHL}	Driver Input to Output	$C_{L1} = C_{L2} = 100 pF$		17	22	ns
t _r	Driver Rise Time	$R_{L_{DIFF}} = 60\Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$			18	ns
t _f	Driver Fall Time	$C_{L1} = C_{L2} = 100 \text{ pF}$ (Figures 3 and 5)			18	ns
tzH	Driver Enable to Output High	C _L = 100 pF (Figures 4 and 6) S1 Open		29	100	ns
t _{ZL}	Driver Enable to Output Low	C _L = 100 pF (Figures 4 and 6) S2 Open		31	60	ns
t _{LZ}	Driver Disable Time from Low	C _L = 15 pF (Figures 4 and 6) S2 Open		13	30	ns
t _{HZ}	Driver Disable Time from High	C _L = 15 pF (Figures 4 and 6) S1 Open		19	200	ns
t _{PLH}	Receiver Input to Output	C _L = 15 pF (Figures 2 and 7)		30	37	ns
tpHL	Receiver Input to Output	S1 and S2 Closed		32	37	ns
tzL	Receiver Enable to Output Low	C _L = 15 pF (Figures 2 and 8) S2 Open		15	20	ns
t _{ZH}	Receiver Enable to Output High	C _L = 15 pF (Figures 2 and 8) S1 Open		11	20	ns
t _{LZ}	Receiver Disable from Low	C _L = 15 pF (Figures 2 and 8) S2 Open		28	32	ns
tHZ	Receiver Disable from High	C _L = 15 pF (Figures 2 and 8) S1 Open		13	35	ns

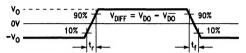

AC Test Circuits



Note: S1 and S2 of load circuit are closed except as otherwise mentioned.

FIGURE 2





Note: Unless otherwise specified the switches are closed.

FIGURE 4

Switching Time Waveforms

TL/F/8759-6
FIGURE 5. Driver Propagation Delays and Transition Times

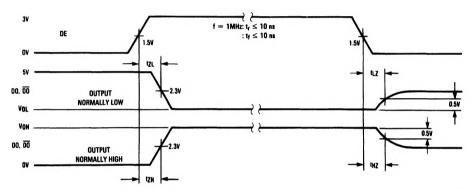
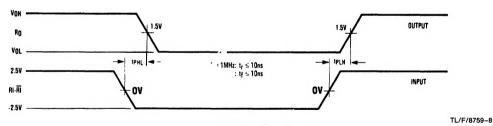



FIGURE 6. Driver Enable and Disable Times

TL/F/8759-7

Note: Differential input voltage may may be realized by grounding $\overline{\mathbf{n}}$ and pulsing \mathbf{n} between +2.5V and -2.5V FIGURE 7. Receiver Propagation Delays

Switching Time Waveforms (Continued)

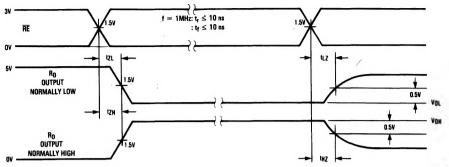
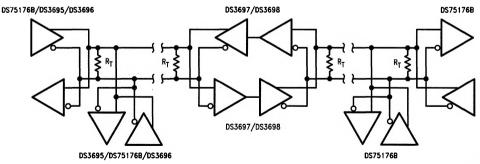


FIGURE 8. Receiver Enable and Disable Times

TL/F/8759-9

Function Tables

DS75176B Transmitting


	Inputs		Line	Out	puts
RE	DE	DI	Condition	DO	DO
х	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	Х	х	Z	Z
X	1	Х	Fault	Z	Z

DS75176B Receiving

	Inputs					
RE	DE	RI-RI	RO			
0	0	≥ +0.2V	1			
0	0	≤ -0.2V	0			
0	0	Inputs Open**	1			
1	0	x	z			

Fault — Improper line conditions causing excessive power dissipation in the driver, such as shorts or bus contention situations

Typical Application

TL/F/8759-11

X - Don't care condition

Z - High impedance state

[&]quot;This is a fail safe condition