DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver ### **General Description** The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards. Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical. A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a $180\,\Omega$ terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a $-55\,^{\circ}\text{C}$ to $+125\,^{\circ}\text{C}$ operating temperature range, and the DS88C20 over a $0\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$ range. #### **Features** - Full compatibility with EIA Standards RS-232-C, RS-422, and RS-423, and Federal Standards 1020 and 1030 - Input voltage range of ±15 V (differential or commonmode) - Separate strobe input for each receiver - ½ V_{CC} strobe threshold for CMOS compatibility - 5k input impedance - 50mV input hysteresis - 200mV input threshold - Operation voltage range = 4.5 V to 15 V ### **Connection Diagram** #### Dual-In-Line and Flat Package ### **Typical Application** RS-422/RS-423 Application C1 0.01),F (NOTE 1) VCC LINE DRIVER AND RECEIVER (NOTE 3) 1/2 MM78630/ MM88C30 1/2 MM88C30 1/2 MM88C30 1/2 MM88C30 1/2 MM88C30 1/2 MM88C30 1/3 MM88C30 1/4 MM88C30 1/4 MM88C30 1/5 MM88C30 1/6 MM88C30 1/7 MM88C30 1/8 RS-232-C Application with Hysteresis - Note 1: (Optional internal termination resistor). - a) Capacitor in series with internal line termination resistor; terminates the line and saves termination power. Exact value depends on line length, - b) Pin 1 connected to pin 2; terminates the line. - c) Pin 2 open; no internal line termination. - d) Transmission line may be terminated elsewhere or not at all. - Note 2: Optional to control response time. - Note 3: V_{CC} = 4.5V to 15V for the DS78C20. For further information on line drivers and line receivers, refer to application notes AN-22, AN-83 and AN-108. For signals which require fail-safe or have slow rise and fall times, use R_1 and D_1 as shown above; otherwise the positive input (pin 3 or pin 11) may be connected to ground. | V _{CC} | R ₁ ± 5% | |-----------------|---------------------| | 5 V | 4.3kΩ | | 10 V | 15 kΩ | | 15 V | 24 kΩ | | Absolute Maximum Ratings (Note 1) | | Operating Conditions | | | | | | |--|-----------------|--|-----|------|-------|--|--| | Supply Voltage | 18V | | MIN | MAX | UNITS | | | | Input Voltage | ±25V | Supply Voltage (VCC) | 4.5 | 15 | V | | | | Strobe Voltage | 18∨ | Temperature (T _A) | | | | | | | Output Sink Current | 50 mA | DS78C20 | -55 | +125 | °C | | | | Power Dissipation | 600 mW | DS88C20 | 0 | +70 | °C | | | | Storage Temperature Range | –65°C to +150°C | Common-Mode Voltage (V _{CM}) | -15 | +15 | V | | | | Lead Temperature (Soldering, 10 seconds) 300°C | 300°C | Differential Input Voltage (VDIFF |) | ≤6 | V | | | ### Electrical Characteristics (Notes 2 and 3) | PARAMETER | | CONDITIONS | | MIN | TYP | MAX | UNITS | |--|--|--|---------------------------|----------------------|-----------------------|-------|-------| | VTH | Differential Threshold Voltage | I _{OUT} = -200 μA, | $-10V \le V_{CM} \le 10V$ | | 0.06 | 0.2 | V | | | | V _{OUT} ≥ V _{CC} - 1.2V | $-15V \le V_{CM} \le 15V$ | | 0.06 | 0.3 | V | | | | IOUT = 1.6 mA, VOUT < 0.5V | $-10V \le V_{CM} \le 10V$ | | -0.08 | −0.2 | ٧ | | | | 10UT - 1.6 MA, VOUT ≤ 0.5V | $-15V \le V_{CM} \le 15V$ | | -0.08 | -0.3 | V | | R _{IN} | Input Resistance | -15V ≤ V _{CM} ≤ 15V | | | 5 | | kΩ | | RŢ | Line Termination Resistance | T _A = 25°C | • | 100 | 180 | 300 | Ω | | IND | IND Data Input Current (Unterminated) | V _{CM} = 10V | | | 2 | 3.1 | mA | | | | V _{CM} = 0V | | | 0 | −0.5 | mA | | | | V _{CM} = -10V | | | -2 | −3.1 | mA | | V _{THB} Input Balance | I_{OUT} = 200 μA, $V_{OUT} \ge V_{CC}$ – 1.2V, R _S = 500Ω, (Note 5) | -7V ≤ V _{CM} ≤ 7V | | 0.1 | 0.4 | V | | | | | I_{OUT} = 1.6 mA, $V_{OUT} \le 0.5V$, R_S = 500 Ω , (Note 5) | $-7V \le V_{CM} \le 7V$ | | -0.1 | -0.4 | ٧ | | ۷он | Logical "1" Output Voltage | I _{OUT} = -200 μA, V _{DIFF} = 1V | | V _{CC} -1.2 | V _{CC} -0.75 | | V | | VOL | Logical "0" Output Voltage | IOUT = 1.6 mA, VDIFF = -1V | | | 0.25 | 0.5 | V | | Icc | Power Supply Current | $15V \le V_{CM} \le -15V$, | V _{CC} = 5.5V | | 8 | 15 | mA | | | | VDIFF = -0.5V (Both Receivers) | V _{CC} = 15V | | 15 | 30 | mA | | I _{IN(1)} | Logical "1" Strobe Input Current | VSTROBE = 15V, VDIFF = 3V | | | 15 | 100 | μА | | IN(0) | Logical "0" Strobe Input Current | VSTROBE = 0V, VDIFF = -3V | | | −0.5 | -100 | μΑ | | V _{IH} Logical "1" Strobe Input Voltage | Logical "1" Strobe Input Voltage | $I_{OUT} = 1.6 \text{ mA, } V_{OL} \le 0.5 \text{V}$ | V _{CC} = 5V | 3.5 | 2.5 | | V | | | | | V _{CC} = 10V | 8.0 | 5 | | V | | | | V _{CC} = 15V | 12.5 | 7.5 | | V | | | V ₁ L Logical "0" Strobe Inpu | Logical "0" Strobe Input Voltage | I _{OUT} = -200 μA, | V _{CC} = 5V | | 2.5 | 1.5 | V | | | | | V _{CC} = 10V | | 5.0 | 2.0 | V | | | | | V _{CC} = 15V | | 7.5 | - 2.5 | V | | los | Output Short-Circuit Current | VOUT = 0V, VCC = 15V, VSTROBE = 0V, (Note 4) | | -5 | -20 | -40 | mA | ## Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$ | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |--|------------------------|-----|-----|-----|-------| | t _{pd0(D)} Differential Input to "0" Output | C _L = 50 pF | | 60 | 100 | ns | | tpd1(D) Differential Input to "1" Output | C _L = 50 pF | | 100 | 150 | ns | | tpd0(S) Strobe Input to "0" Output | C _L = 50 pF | | 30 | 70 | ns | | tpd1(S) Strobe Input to "1" Output | C _L = 50 pF | | 100 | 150 | ns | Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS78C20 and across the 0° C to $+70^{\circ}$ C range for the DS88C20. All typical values are for $T_A = 25^{\circ}$ C, $V_{CC} = 5V$ and $V_{CM} = 0V$. Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis. Note 4: Only one output at a time should be shorted. Note 5: Refer to EIA-RS-422 for exact conditions. # AC Test Circuit and Switching Time Waveforms *Includes probe and jig capacitance