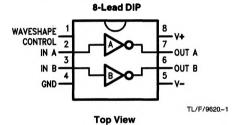


## DS9636A RS-423 Dual Programmable Slew Rate Line Driver

### **General Description**

The DS9636A is a TTL/CMOS compatible, dual, single ended line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423.


The DS9636A is suitable for use in digital data transmission systems where signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control lead (WS) and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Current-limiting is provided in both output states. The DS9636A is designed for nominal power supplies of  $\pm\,12V$ .

Inputs are TTL compatible with input current loading low enough (1/10 UL) to be also compatible with CMOS logic. Clamp diodes are provided on the inputs to limit transients below ground.

#### **Features**

- Programmable slew rate limiting
- Meets EIA Standard RS-423
- Commercial or extended temperature range
- Output short circuit protection
- TTL and CMOS compatible inputs

### **Connection Diagram**



Order Number DS9636ACJ, DS9636ACN or DS9636AMJ See NS Package Number J08A or N08E

For Complete Military 883 Specifications, see RETS Data Sheet.

Order Number DS9636AJ/883 See NS Package Number J08A

150 mA

### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

Ceramic DIP −65°C to +175°C Molded DIP −65°C to +150°C

Lead Temperature

Ceramic DIP (Soldering, 60 seconds) 300°C Molded DIP (Soldering, 10 seconds) 265°C Maximum Power Dissipation\* at 25°C (Note 5)

Cavity Package 1560 mW Molded Package 1300 mW V+ Lead Potential to Ground Lead V- to +15V

V - Lead Potential to Ground Lead +0.5V to -15V V+ Lead Potential to V - Lead 0V to +30V

Output Potential to Ground Lead ± 15V
Output Source Current -150 mA

### **Recommended Operating Conditions**

| Characteristics                            | DS9636AM |     |       |       | Units |       |       |
|--------------------------------------------|----------|-----|-------|-------|-------|-------|-------|
| Cital actoristics                          | Min      | Тур | Max   | Min   | Тур   | Max   | Ointe |
| Positive Supply Voltage (V+)               | 10.8     | 12  | 13.2  | 10.8  | 12    | 13.2  | V     |
| Negative Supply Voltage (V−)               | -13.2    | -12 | -10.8 | -13.2 | -12   | -10.8 | ٧     |
| Operating Temperature (T <sub>A</sub> )    | -55      | 25  | 125   | 0     | 25    | 70    | °C    |
| Wave Shaping Resistance (R <sub>WS</sub> ) | 10       |     | 500   | 10    |       | 1000  | kΩ    |

**Output Sink Current** 

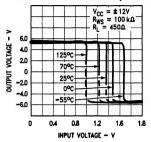
# **Electrical Characteristics** Over recommended operating temperature, supply voltage and wave shaping resistance ranges unless otherwise specified (Notes 2 and 3)

| Symbol           | Parameter                             | Conditions                                                                        | Min  | Тур  | Max  | Units |  |
|------------------|---------------------------------------|-----------------------------------------------------------------------------------|------|------|------|-------|--|
| V <sub>OH1</sub> | Output Voltage HIGH                   | $R_L$ to GND ( $R_L = \infty$ )                                                   | 5.0  | 5.6  | 6.0  | V     |  |
| V <sub>OH2</sub> |                                       | $R_L$ to GND ( $R_L = 3.0 \text{ k}\Omega$ )                                      | 5.0  | 5.6  | 6.0  | _ v   |  |
| V <sub>OH3</sub> |                                       | $R_L$ to GND ( $R_L = 450\Omega$ )                                                | 4.0  | 5.5  | 6.0  | v     |  |
| V <sub>OL1</sub> | Output Voltage LOW                    | R <sub>L</sub> to GND (R <sub>L</sub> = ∞)                                        | -6.0 | -5.7 | -5.0 | V     |  |
| V <sub>OL2</sub> |                                       | $R_L$ to GND ( $R_L = 3.0 \text{ k}\Omega$ )                                      | -6.0 | -5.6 | -5.0 | V     |  |
| V <sub>OL3</sub> |                                       | $R_L$ to GND ( $R_L = 450\Omega$ )                                                | -6.0 | -5.4 | -4.0 | V     |  |
| Ro               | Output Resistance                     | 450Ω ≤ R <sub>L</sub>                                                             |      | 25   | 50   | Ω     |  |
| los+             | Output Short Circuit Current (Note 4) | $V_O = 0V, V_I = 0V$                                                              | -150 | -60  | -15  | mA    |  |
| los-             |                                       | $V_0 = 0V, V_1 = 2.0V$                                                            | 15   | 60   | 150  | mA    |  |
| ICEX             | Output Leakage Current                | $V_0 = \pm 6.0V$ , Power-Off                                                      | -100 |      | +100 | μА    |  |
| V <sub>IH</sub>  | Input Voltage HIGH                    |                                                                                   | 2.0  |      |      | V     |  |
| V <sub>IL</sub>  | Input Voltage LOW                     |                                                                                   |      |      | 0.8  | V     |  |
| V <sub>IC</sub>  | Input Clamp Diode Voltage             | I <sub>I</sub> = 15 mA                                                            | -1.5 | -1.1 |      | V     |  |
| I <sub>IL</sub>  | Input Current LOW                     | V <sub>I</sub> = 0.4V                                                             | -80  | -16  |      | V     |  |
| lін              | Input Current HIGH                    | V <sub>I</sub> = 2.4V                                                             |      | 1.0  | 10   | μА    |  |
|                  |                                       | V <sub>I</sub> = 5.5V                                                             |      | 10   | 100  | μ.    |  |
| I+               | Positive Supply Current               | $V_{CC} = \pm 12V$ , $R_L = \infty$ , $R_{WS} = 100 \text{ k}\Omega$ , $V_I = 0V$ |      | 13   | 18   | mA    |  |
| 1-               | Negative Supply Current               | $V_{CC} = \pm 12V, R_L = \infty,$<br>$R_{WS} = 100 \text{ k}\Omega, V_I = 0V$     | -18  | -13  |      | mA    |  |

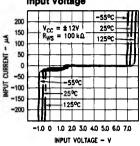
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified Min/Max limits apply across the  $-55^{\circ}$ C to  $+125^{\circ}$ C temperature range for the DS9636AM and across the  $0^{\circ}$ C to  $+70^{\circ}$ C range for the DS9636AC. All typicals are given for  $V_{CC} = 5V$  and  $T_A = 25^{\circ}$ C.

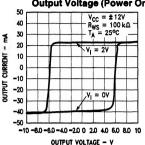
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified.


Note 4: Only one output at a time should be shorted.

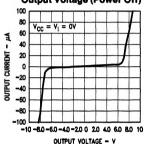
Note 5: Ratings apply to ambient temperature at 25°C. Above this temperature, derate J and N packages 10.4 mW/°C.


| Symbol         | Parameter | Condition                      | Min | Тур | Max | Units |
|----------------|-----------|--------------------------------|-----|-----|-----|-------|
| t <sub>r</sub> | Rise Time | R <sub>WS</sub> = 10 kΩ        | 0.8 | 1.1 | 1.4 |       |
|                |           | $R_{WS} = 100  k\Omega$        | 8.0 | 11  | 14  | μS    |
|                |           | $R_{WS} = 500 \text{ k}\Omega$ | 40  | 55  | 70  | μ3    |
|                |           | $R_{WS} = 1000 k\Omega$        | 80  | 110 | 140 |       |
| t <sub>t</sub> | Fall Time | $R_{WS} = 10 \text{ k}\Omega$  | 0.8 | 1.1 | 1.4 |       |
|                |           | $R_{WS} = 100  k\Omega$        | 8.0 | 11  | 14  | μs    |
|                |           | $R_{WS} = 500  k\Omega$        | 40  | 55  | 70  | μο    |
|                |           | $R_{WS} = 1000  k\Omega$       | 80  | 110 | 140 |       |

### **Typical Performance Characteristics**


## Input/Output Transfer Characteristic vs Temperature

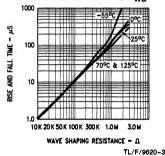


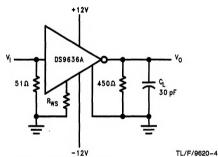

input Current vs Input Voltage



Output Current vs Output Voltage (Power On)

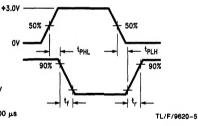



## Output Current vs Output Voltage (Power Off)




## Supply Current vs Temperature




Transition Time vs Rws





 $V_1$   $V_0$  Amplitude: 3.0V Offset: 0V Pulse Width: 500 μs PRR: 1.0 kHz  $t_f = t_f \le 10$  ns

٧



Note: CL includes jig and probe capacitance

FIGURE 1. AC Test Circuit and Waveforms

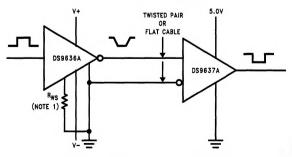



FIGURE 2. RS-423 System Application

TL/F/9620-6