SONY

4ch LED Controller with Voltage Boost Type DC-DC Converter

CXA3757GF

Description

The CXA3757GF is a 4ch LED controller at high efficiency with a voltage boost type DC-DC converter. This IC has a built-in function of controller for each LEDs connected to the 4-channel outputs at the minimum necessary voltage (Max. VF detection function). (For details, see page 7.) (Applications: Portable equipment, etc.)

Features

- ◆ 4-channel outputs (4ch/3ch selectable)
- ◆ Capable of drive up to 80mA (20mA per channel)
- ◆ Max. VF detection function allows high efficiency LED driving
- ◆ PWM input luminance adjustment function
- ◆ Operation protection with voltage boost type DC-DC converter (with overvoltage and TSD protection function)
- ◆ Operating voltage range 2.0V to 4.8V supported
- ◆ 1.5 × 2.0mm small package size (12-pin, WLP)
- ◆ Small chip coil can be supported

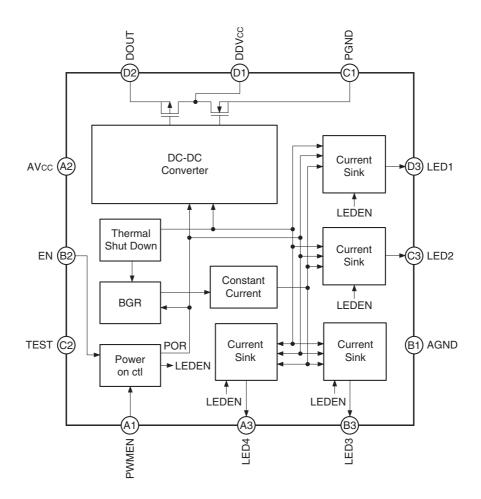
Structure

CMOS silicon monolithic IC

Absolute Maximum Ratings

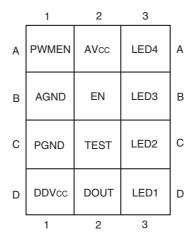
(Ta = 25°C)

•	Supply voltage	AVcc	GND – 0.3 to +5.5	V
•	Operating temperature	Topr	-30 to +85	$^{\circ}$ C
٠	Storage temperature	Tstg	-55 to +150	°C


Recommended Operating Conditions

 Supply voltage 	AVcc	2.0 to 4.8	V
Operating temperature	Topr	-30 to +85	°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.


- 1 - E07Y44-PS

Block Diagram

Pin Configuration

(Top View)

List of Pins

Pin No.	Symbol	I/O	Description	Pin No.	Symbol	I/O	Description
A1	PWMEN	I	LED luminance adjustment	B1	AGND	G	Analog GND
B2	EN	ı	Enable	D2	DOUT	0	DC-DC converter output
C2	TEST	I	TEST input (Fixed to GND when used)	C1	PGND	G	DC-DC converter GND
A2	AVcc	Р	Analog power supply	D1	DDVcc	I	DC-DC converter input
A3	LED4	0	LED connection 4	B3	LED3	0	LED connection 3
C3	C3 LED2 O LED connection 2		D3	LED1	0	LED connection 1	

Pin Description

Pin No.	Symbol	I/O	Standard pin voltage	Equivalent circuit	Description
A1	PWMEN	ı	GND to AVcc	AVCC AGND	LED luminance adjustment
B2	EN	ı	GND to AVcc	AVcc B2 AGND	Enable
C2	TEST	1	GND to AVcc	AVcc C2 AGND	TEST input (Fixed to GND when used)
A2	AVcc	_	GND to AVcc	_	Analog power supply
D2	DOUT	0	GND to 4.8V	DDVcc @2	DC-DC converter output

Pin No.	Symbol	I/O	Standard pin voltage	Equivalent circuit	Description	
D1	DDVcc	I	GND to DOUT	DOUT PGND	DC-DC converter input	
D3	LED1	0		DOUT		
C3	LED2	0	0.05V to (DOUT – VF)	B3 T C3 T	LED connection	
В3	LED3	0		AGND		
А3	LED4	0	0.05V to (DOUT – VF)	AGND AGND	LED connection	
B1	AGND	_	GND	_	Analog GND	
C1	PGND	_	GND	_	DC-DC converter GND	

Electrical Characteristics

(Unless otherwise specified, AVcc = 3.6V, Ta = 25° C)

Circuit Current

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current consumption in standby mode	IRESET	AVcc = 3.6V, EN = L	_	0	1	μА
Current consumption 1 in operation mode	ICC1	AVcc = 3.6V, EN = H, PWMEN = L (LED OFF)	_	0.5	0.8	mA
Current consumption 2 in operation mode	ICC2	AVcc = 3.6V, EN = H, PWMEN = H (4ch LED ON)	_	0.9	1.6	mA

DC-DC Converter Block

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum output current	Ірсоит	_	80	_	_	mA
Conversion efficiency	η	IDCOUT = 80mA, AVCC = 3V	80	90	_	%
PWM oscillation frequency	fosc	_	0.8	1.0	1.2	MHz
Overvoltage detection	VDCLM	_	4.5	4.75	5.0	V
Input peak current detection	VIPEAK	AVcc = 3V	_	500	_	mA
LED voltage when voltage boosted*1	VLED	When in MAX VF mode, AVcc = 3V	_	0.14	0.28	V

^{*1} See LED voltage on page 8.

ENABLE

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
PWM input frequency range	Fрwм	_	0.1		1	kHz

Logic Block

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
High level input voltage	VLIH	EN, PWMEN each pin	1.2	_	AVcc	V
Low level input voltage	VLIL		-0.3	_	0.4	V
Input pull-down resistor	REN		200	300	_	kΩ

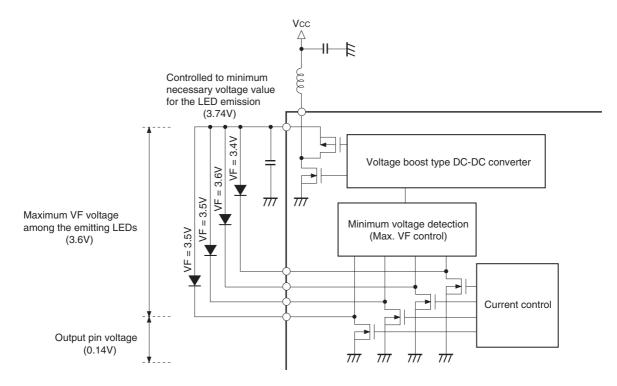
LED Driver Block

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Max. drive current	Іоит	Per 1ch output	19	20	21	mA
Output leakage	ILEAK	When LED output voltage 3.6V		0	1	μΑ

Description of Operation

1. Operation Mode

When input voltage is higher than the voltage required to turn on LED, this IC does not perform boost operation, and then outputs the input voltage as it is to DOUT. (Through mode)

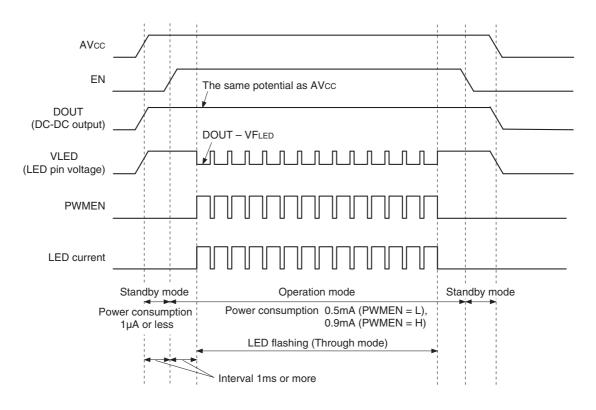

When input voltage is less than the voltage required to turn on LED, this IC performs voltage boost operation to the minimum necessary voltage to turn on LED and output to DOUT. (Max. VF mode)

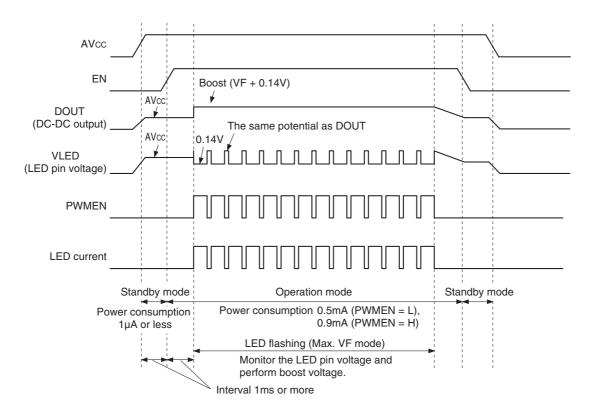
Through mode and Max. VF mode can be switched automatically within IC.

2. Boost Operation

When even 1 channel of the 4 channels of LED connection pins cannot hold constant current by LED driver, the internal DC-DC converter circuit turns on and the Max. VF detection circuit operates. This Max. VF detection operation controls the DC-DC converter output voltage to the minimum necessary voltage in accordance with the lighting status of all the connected LEDs.

This makes it possible to drive the various LEDs at high efficiency.


Example of LED Max. VF Detection Operation


3. Start-up Characteristics

This IC does not consume current from AVcc power-on until EN pin is set from Low to High. (Standby mode)

Start-up characteristics in through mode

Start-up characteristics in Max. VF mode

4. Inductor Selection

The recommended inductance value is $4.2\mu H$.

Note that the relationship between the output current capacity and the inductance value can be obtained by the following formula.

$$I_{DCOUT(MAX)} \, = \, \eta \times \left\{ I_P - \left(\frac{V_{IN} \times D}{f \times L \times 2} \right) \right\} \times (1 - D)$$

 η = Estimated efficiency

IP = Peak current limit value

VIN = Input voltage

D = Steady - state duty ratio

f = Switching frequency (Typ.: 1.0MHz)

L = Inductance value

5. Capacitor Selection

a) Input capacitor

The input capacitor stabilizes the input voltage and averages the input current, making it possible to improve the efficiency. For this reason, use a capacitor with low ESR.

The recommended capacitance value is 4.7 µF (B constant tolerance).

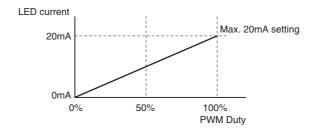
b) Output capacitor

The output capacitor holds the output voltage when the internal Nch transistor turns ON, and smoothes the ripple voltage. For this reason, use a capacitor with low ESR.

The recommended capacitance value is 4.7µF (B constant tolerance).

6. Processing When Using 3ch

When using 3ch, connect LED4 pin to DOUT.


The CXA3757GF detects connection to DOUT internally and sets the channel not to input current.

This results in operation using 3ch.

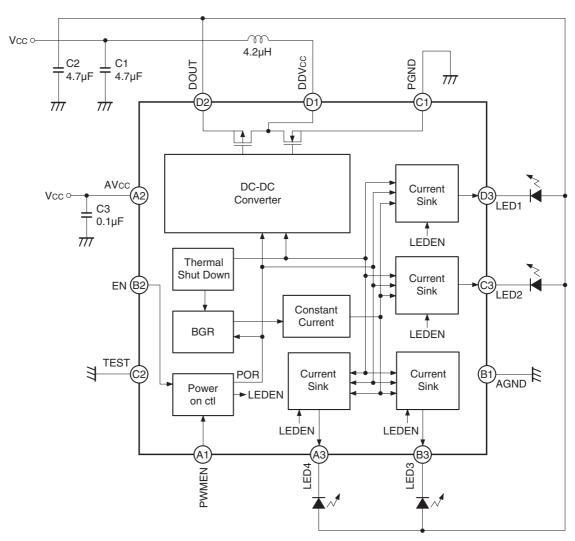
7. LED Luminance Adjustment

LED luminance can be adjusted by changing the pulse duty input to PWMEN pin.

The pulse frequency input to PWMEN pin can be supported within the range of 0.1kHz to 1kHz.

8. Operation during LED Open Failure

At Max. VF mode operation, the DC-DC converter circuit monitors all the LED connection pins and supplies the minimum necessary voltage, so when an LED open failure occurs, the DC-DC converter output voltage rises and detects overvoltage.


After that the DC-DC converter output is controlled by overvoltage detection value (approximate 4.75V).

9. Thermal Shutdown

This IC is provided with a thermal shutdown circuit which shuts down the DC-DC converter circuit and all LED drive circuits when the IC junction temperature reaches approximately 150°C.

SONY CXA3757GF

Application Circuit

Recommended External Elements

LED : NSSW020BT (nichia)
L (4.2µH) : MIPWT3226D4R2 (FDK)
C1, 2 (4.7µF) : GRM188B30J475KE18D (murata)
C3 (0.1µF) : GRM033B30J104KE18D (murata)

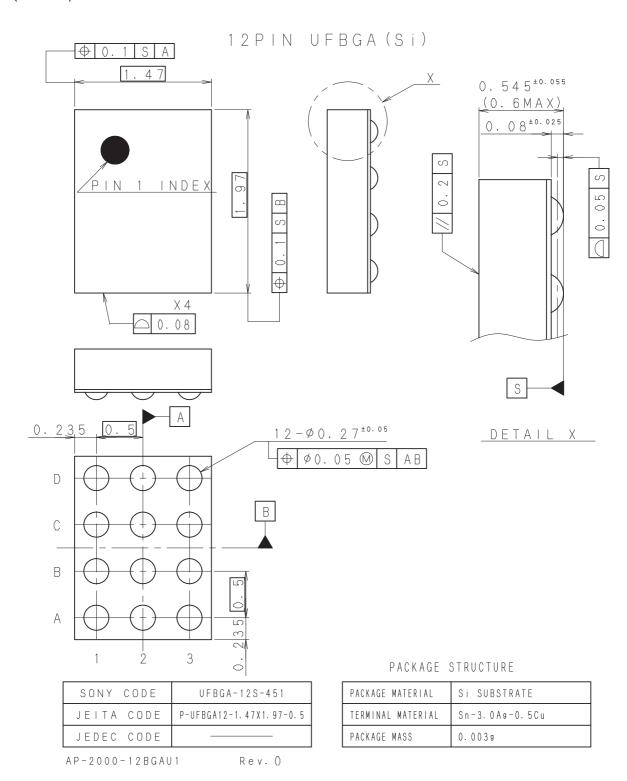
Recommended Board Pattern

1. Pattern wiring

As for wiring for DDVcc pin and GND wiring for PGND, avoid sharing with other wiring.

2. Component layout

When uses determine the board layout, the trace length to the resistor of the inductor, input and output capacitors should be as short as possible.


Also, locate the power supply bypass capacitors as close to the IC as possible.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems

arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Package Outline

(Unit: mm)

