Software **ESD351** SLVSEO3-JULY 2018 # ESD351 1-Channel 30 kV ESD Protection Diode with Low Clamping Voltage in 0402 Package #### **Features** - IEC 61000-4-2 Level 4 ESD Protection - ±30-kV Contact Discharge - ±30-kV Air Gap Discharge - IEC 61000-4-4 EFT Protection - 80 A (5/50 ns) - IEC 61000-4-5 Surge Protection - $-6 A (8/20 \mu s)$ - IO Capacitance: 1.8 pF (Typical) - DC Breakdown Voltage: 4.5 V (Minimum) - Low Leakage Current: 0.1 nA (Typical) - Extremely Low ESD Clamping Voltage - 6.5 V at 16-A TLP (I/O Pin to GND) - R_{DYN} : 0.1 Ω (I/O Pin to GND) - Industrial Temperature Range: -40°C to +125°C - Industry Standard 0402 Package (DFN1006P2) ## **Applications** - **End Equipment** - Wearables - Industrial and Service Robots - Laptops and Desktops - Mobile and Tablets - **Set-Top Boxes** - DVR and NVR - TV and Monitors - EPOS (Electronic Point of Sale) - Interfaces - USB 2.0/1.1 - **GPIO** - **Pushbuttons** - Audio # 3 Description The ESD351 is a uni-directional TVS ESD protection diode featuring low dynamic resistance R_{DYN} and low clamping voltage. The ESD351 is rated to dissipate ESD strikes up to 30 kV (Contact and Air) level per the IEC 61000-4-2 standard. The ultra-low dynamic resistance (0.1 Ω) and extremely low clamping voltage (6.5 V at 16-A TLP) ensure system level protection against transient events. This device has a capacitance of 1.8 pF (typical) making it ideal for protecting interfaces such as USB 2.0. The ESD351 is offered in the industry standard 0402 (DPY/DFN1006P2) package. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|-----------|-------------------| | ESD351 | X1SON (2) | 0.60 mm × 1.00 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. ## Typical USB 2.0 Application Schematic # **Table of Contents** | 1 | Features 1 | 7.4 Device Functional Modes | |---|--|---| | 2 | Applications 1 | 8 Application and Implementation | | 3 | Description 1 | 8.1 Application Information | | 4 | Revision History2 | 8.2 Typical Application | | 5 | Pin Configuration and Functions 3 | 9 Power Supply Recommendations 1 | | 6 | Specifications4 | 10 Layout 1′ | | | 6.1 Absolute Maximum Ratings 4 | 10.1 Layout Guidelines 1 | | | 6.2 ESD Ratings -JEDEC Specifications | 10.2 Layout Example 1 | | | 6.3 ESD Ratings - IEC Specifications 4 | 11 Device and Documentation Support 12 | | | 6.4 Recommended Operating Conditions 4 | 11.1 Documentation Support | | | 6.5 Thermal Information | 11.2 Receiving Notification of Documentation Updates 12 | | | 6.6 Electrical Characteristics5 | 11.3 Community Resources | | | 6.7 Typical Characteristics6 | 11.4 Trademarks12 | | 7 | Detailed Description 8 | 11.5 Electrostatic Discharge Caution | | | 7.1 Overview 8 | 11.6 Glossary | | | 7.2 Functional Block Diagram 8 | 12 Mechanical, Packaging, and Orderable | | | 7.3 Feature Description 8 | Information 12 | # 4 Revision History | DATE | REVISION | NOTES | |-----------|----------|------------------| | July 2018 | * | Initial release. | www.ti.com # **5 Pin Configuration and Functions** **Pin Functions** | PIN | | 1/0 | DESCRIPTION | | |-----|----------|-----|--|--| | NO. | NO. NAME | | DESCRIPTION | | | 1 | Ю | I/O | ESD Protected Channel. Connect this pin to the line being protected. | | | 2 | GND | GND | Connect this pin to Ground | | #### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)⁽¹⁾ | | | MIN | MAX | UNIT | |------------------------------|--|-----|-----|------| | Electrical Fast
Transient | IEC 61000-4-4 Peak Current at 25 °C | | 80 | А | | Comma Dedaga | IEC 61000-4-5 Surge (tp 8/20 μs) Peak Power at 25 °C | | 36 | W | | Surge Pulse | IEC 61000-4-5 Surge (tp 8/20 μs) Peak Current at 25 °C | | 6 | Α | | T _A | Operating free-air temperature | -40 | 125 | °C | | T _{stg} | Storage temperature | -65 | 155 | °C | ⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # 6.2 ESD Ratings -JEDEC Specifications | | | | VALUE | UNIT | |--------------------|---------------------------|--|-------|------| | ., | Classica dia dia da avera | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, allpins (1) | ±2500 | V | | V _(ESD) | Electrostatic discharge | atic discharge Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins (2) | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. # 6.3 ESD Ratings - IEC Specifications | | | | VALUE | UNIT | |--------|-------------------------|---|--------|------| | V | Electrostatio discharge | IEC 61000-4-2 Contact Discharge, all pins | ±30000 | V | | V(ESD) | Electrostatic discharge | IEC 61000-4-2 Air Discharge, all pins | ±30000 | V | ## 6.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |----------------|--------------------------------|-----|---------|------| | V_{IN} | Input voltage | 0 | 3.6 | ٧ | | T _A | Operating Free Air Temperature | -40 | 125 | °C | #### 6.5 Thermal Information | | | ESD351 | | |----------------------|--|-------------|------| | | THERMAL METRIC ⁽¹⁾ | DPY (X1SON) | UNIT | | | | 2 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 409.4 | °C/W | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 216.8 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 140.4 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 81.4 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 140.0 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | N/A | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: ESD351 **STRUMENTS** ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. www.ti.com #### 6.6 Electrical Characteristics At TA = 25°C unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|-----------------------------------|---|-----|------|-----|------| | V _{RWM} | Reverse stand-off voltage | I _{IO} < 50 nA, across operating temperature range | | | 3.6 | V | | I _{LEAKAGE} | Leakage current at 3.6 V | $V_{IO} = 3.6 \text{ V}, \text{ I/O to GND}$ | | 0.1 | 10 | nA | | V_{BRF} | Breakdown voltage, I/O to GND (1) | I _{IO} = 1 mA | 4.5 | | 7.5 | V | | V_{FWD} | Forward Voltage, GND to I/O (1) | I _{IO} = 1 mA | | 0.8 | | V | | V _{HOLD} | Holding voltage, I/O to GND (2) | I _{IO} = 1 mA | | 5.1 | | V | | | | I _{PP} = 6 A (8/20 μs Surge), I/O to GND | | 6.1 | | V | | V_{CLAMP} | Clamping voltage | I _{PP} = 16 A (100 ns TLP), I/O to GND | | 6.5 | | V | | | | I _{PP} = 16 A (100 ns TLP), GND to I/O | | 2.5 | | V | | D | D | I/O to GND, 100 ns TLP, between 10 to 20 A I _{PP} | | 0.1 | | 0 | | R_{DYN} | Dynamic resistance | GND to I/O , 100 ns TLP, between 10 to 20 A I _{PP} | | 0.08 | | Ω | | C _{LINE} | Line capacitance, IO to GND | V _{IO} = 0 V, V _{p-p} = 30 mV, f = 1 MHz | | 1.8 | 2.2 | pF | ⁽¹⁾ V_{BRF} and V_{BRR} are defined as the voltage obtained at 1 mA when sweeping the voltage up, before the device latches into the snapback state ⁽²⁾ V_{HOLD} is defined as the voltage when 1 mA is applied, after the device has successfully latched into the snapback state. SLVSEO3 – JULY 2018 www.ti.com # TEXAS INSTRUMENTS ## 6.7 Typical Characteristics www.ti.com # **Typical Characteristics (continued)** ## 7 Detailed Description #### 7.1 Overview The ESD351 is a uni-directional ESD Protection Diode with 30 kV IEC 61000-4-2 level (Contact and Air) with ultra-low clamping voltage in a 1 mm \times 0.6 mm package. The ultra-low clamping makes this device capable of protecting any ESD-sensitive pins. ## 7.2 Functional Block Diagram #### 7.3 Feature Description ESD351 provides ESD protection up to ± 30 -kV contact and ± 30 -kV air gap per IEC 61000-4-2 standard. During an ESD event, ESD diode connected to the I/O pin turns on and diverts the current to ground. Additionally, ESD351 also provides protection against IEC 61000-4-5 Surge currents up to 6 A (8/20 μ s waveform) and up to 80 A per IEC 61000-4-4 (5/50 ns waveform, 4 kV with 50- μ 0 impedance) electrical fast transient (EFT) standard. The capacitance between the I/O pin and ground is 1.8 pF (typical) and 2.2 pF (maximum). The device features a low leakage current of 0.1 nA (typical) and 50 nA (maximum, across operating temperature range) with a bias of 3.6 V. The ESD diode at the I/O pin protects the ESD-sensitive devices by clamping the voltage to a low value of 6.5 V (I_{PP} = 16 A 100 ns TLP). The layout of this device makes it simple and easy to add protection to an existing layout. The packages offers flow-through routing, requiring minimal modification to an existing layout. #### 7.4 Device Functional Modes The ESD351 is a passive integrated circuit that triggers when voltages are above V_{BRF} or below V_{FWD} . During ESD events, voltages as high as ± 30 kV (contact or air) can be directed to ground via the internal diode network. When the voltages on the protected line fall below the trigger levels of ESD351 (usually within 10s of nanoseconds) the device reverts to passive. Submit Documentation Feedback ## 8 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 8.1 Application Information The ESD351 is a diode type TVS which is used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. The low R_{DYN} of the triggered TVS holds this voltage, V_{CLAMP} , to a safe level for the protected IC. ## 8.2 Typical Application Figure 10. USB 2.0 ESD Schematic #### 8.2.1 Design Requirements For this design example, two ESD351 devices are being used in a USB 2.0 application. This provides a complete ESD protection scheme. Given the USB 2.0 application, the parameters listed in Table 1 are known. **Table 1. Design Parameters** | DESIGN PARAMETER | VALUE | |------------------------------------|---------------| | Signal range on DP-DM lines | 0 V to 3.6 V | | Operating frequency on DP-DM lines | up to 240 MHz | #### 8.2.2 Detailed Design Procedure #### 8.2.2.1 Signal Range The ESD351 supports signal ranges between 0 V and 3.6 V, which supports the USB 2.0 signal pair on the USB 2.0 application. #### 8.2.2.2 Operating Frequency The ESD351 has a 1.8 pF (typical) capacitance, which supports the USB 2.0 data rates of 480 Mbps. SLVSEO3 – JULY 2018 www.ti.com # TEXAS INSTRUMENTS # 8.2.3 Application Curve Figure 11. Insertion Loss Submit Documentation Feedback ## 9 Power Supply Recommendations The ESD351 is a passive ESD device so there is no need to power it. Take care not to violate the recommended I/O specification (0 V to 3.6 V) to ensure the device functions properly. ## 10 Layout www.ti.com ## 10.1 Layout Guidelines - The optimum placement is as close to the connector as possible. - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures. - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector. - · Route the protected traces as straight as possible. - Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible. - Electric fields tend to build up on corners, increasing EMI coupling. #### 10.2 Layout Example Figure 12. USB 2.0 ESD Layout Copyright © 2018, Texas Instruments Incorporated #### 11 Device and Documentation Support ## 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation see the following: Generic ESD Device Evaluation Module, SLVUBG5 #### 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. # 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 11.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 11.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. ## PACKAGE OPTION ADDENDUM 1-Aug-2018 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|----------------|---------| | | (1) | | J | | Qty | (2) | (6) | (3) | | (4/5) | | | ESD351DPYR | ACTIVE | X1SON | DPY | 2 | 10000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | DE | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 26-Jul-2018 # TAPE AND REEL INFORMATION | | | Dimension designed to accommodate the component width | |---|----|---| | E | 30 | Dimension designed to accommodate the component length | | K | (0 | Dimension designed to accommodate the component thickness | | | Ν | Overall width of the carrier tape | | F | 21 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|---|-------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ESD351DPYR | X1SON | DPY | 2 | 10000 | 180.0 | 8.4 | 0.7 | 1.1 | 0.47 | 4.0 | 8.0 | Q1 | | ESD351DPYR | X1SON | DPY | 2 | 10000 | 178.0 | 8.4 | 0.7 | 1.15 | 0.47 | 2.0 | 8.0 | Q1 | www.ti.com 26-Jul-2018 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |------------|--------------|-----------------|------|-------|-------------|------------|-------------|--| | ESD351DPYR | X1SON | DPY | 2 | 10000 | 203.2 | 196.8 | 33.3 | | | ESD351DPYR | X1SON | DPY | 2 | 10000 | 205.0 | 200.0 | 33.0 | | NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994. - B. This drawing is subject to change without notice.C. SON (Small Outline No-Lead) package configuration. # DPY (R-PX1SON-N2) ## PLASTIC SMALL OUTLINE NO-LEAD - NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. #### **IMPORTANT NOTICE** Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.