

SEMICONDUCTOR®

FDME1023PZT Dual P-Channel PowerTrench[®] MOSFET -20 V, -2.6 A, 142 mΩ

Features

- Max $r_{DS(on)}$ = 142 m Ω at V_{GS} = -4.5 V, I_D = -2.3 A
- Max r_{DS(on)} = 213 mΩ at V_{GS} = -2.5 V, I_D = -1.8 A
- Max r_{DS(on)} = 331 mΩ at V_{GS} = -1.8 V, I_D = -1.5 A
- Max r_{DS(on)} = 530 mΩ at V_{GS} = -1.5 V, I_D = -1.2 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Free from halogenated compounds and antimony oxides
- HBM ESD protection level > 1600 V (Note 3)
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for the battery charges switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 1.6x1.6 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

Applications

- Load Switch
- Battery Charging
- Battery Disconnect Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Paramo	eter		Ratings	Units
V _{DS}	Drain to Source Voltage	-20	V		
V _{GS}	Gate to Source Voltage			±8	V
	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-2.6	^
D	-Pulsed			-6	A
P _D	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	14/
	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.6	W
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	90	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	195	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
2T	FDME1023PZT	MicroFET 1.6x1.6 Thin	7 "	8 mm	5000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.6	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		2		mV/°C
-	Drain to Source On Resistance	V _{GS} = -4.5 V, I _D = -2.3 A		95	142	mΩ
		$V_{GS} = -2.5 \text{ V}, I_D = -1.8 \text{ A}$		120	213	
r		V _{GS} = -1.8 V, I _D = -1.5 A		150	331	
r _{DS(on)}		V _{GS} = -1.5 V, I _D = -1.2 A		190	530	
		$V_{GS} = -4.5 \text{ V}, I_D = -2.3 \text{ A},$ $T_J = 125 \text{ °C}$		128	190	
9 _{FS}	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, I_{D} = -2.3 \text{ A}$		7		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			305	405	pF
C _{oss}	Output Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz		55	75	pF
C _{rss}	Reverse Transfer Capacitance			50	75	pF
	g Characteristics					
t _{d(on)}	Turn-On Delay Time			4.7	10	ns
t _r	Rise Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$		4.8	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = -4.5 V, R _{GEN} = 6 Ω		33	53	ns
t _f	Fall Time			16	29	ns

t _r	Rise Time	$V_{DD} = -10$ V, I _D = -1 A, V _{GS} = -4.5 V, R _{GEN} = 6 Ω	4.8	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6.52$	33	53	ns
t _f	Fall Time		16	29	ns
Qg	Total Gate Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -2.3 \text{ A},$ $V_{GS} = -4.5 \text{ V}$	5.5	7.7	nC
Q _{gs}	Gate to Source Gate Charge		0.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	• GS = • •.0 •	1.4		nC
	· ·				

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -0.9 A$ (N	Note 2)	-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -2.3 A, di/dt = 100 A/μs		16	29	ns
Q _{rr}	Reverse Recovery Charge	$F = -2.3 \text{ A}, \text{ u/ul} = 100 \text{ A/}\mu\text{S}$		4.4	10	nC

NOTES: 1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

a. 90 °C/W when mounted on a 1 in² pad of 2 oz copper.

3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.

b. 195 °C/W when mounted on a minimum pad of 2 oz copper.

©2010 Fairchild Semiconductor Corporation FDME1023PZT Rev.C1

FDME1023PZT Dual P-Channel PowerTrench[®] MOSFET

©2010 Fairchild Semiconductor Corporation FDME1023PZT Rev.C1 www.fairchildsemi.com

©2010 Fairchild Semiconductor Corporation FDME1023PZT Rev.C1

5

RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
-	First Production

FDME1023PZT Dual P-Channel PowerTrench[®] MOSFE