

Features

- Spread Spectrum Clock Generator (SSCG) with 1x Spread and 1X non-Spread Output.
- 6 to 82 MHz operating frequency range.
- Modulates external clocks including crystals, crystal oscillators and ceramic resonators.
- Programmable modulation with simple R-C external loop filter (LF)
- Provides Two Output Clocks, One Modulated and One Non-Modulated clock.
- Center Spread Modulation.
- 3 5 Volt power supply.
- TTL/CMOS compatible outputs.
- Low short term jitter.
- Low Power Dissipation;

3.3 VDC = 37 mW - typical5.0 VDC = 115 mW - typical

• Available in 8 pin SOIC package.

Product Description

The CYPRESS FS786/787 are Spread Spectrum Clock Generator ICs (SSCG) designed for the purpose of reducing Electro Magnetic Interference (EMI) found in today's high-speed digital systems.

The FS786/787 SSCG clocks use an Cypress proprietary technology to modulate the input clock frequency, FSOUT by modulating the frequency of the digital clock. By modulating the reference clock the measured EMI at the fundamental and harmonic frequencies of FSOUT is greatly reduced. This reduction in radiated energy can significantly reduce the cost of complying with regulatory requirements without degrading digital waveforms.

The CYPRESS FS786/787 clocks are very simple and versatile devices to use. Range selection is performed via one pin, D0. The FS786/787 are designed to operate over a very wide range of input frequencies and provide one modulated and one non-modulated output.

Low EMI Spread Spectrum Clock

Applications

- Desktop/Notebook Computers
- Printers, Copiers and MFP
- Scanners and Fax
- LCD Displays and Monitors
- CD-ROM, VCD and DVD
- Automotive and Embedded Systems
- Networking, LAN/WAN
- Digital Cameras and Camcorders
- Modems

Benefits

- Programmable EMI Reduction
- Fast Time to Market
- Lower cost of compliance
- No degradation in Rise/Fall times
- Lower component and PCB layer count

The FS786/787 devices have a simple frequency selection table that allows operation from 6 MHz to 82 MHz in two separate ranges and two separate parts. The bandwidth of the frequency spread at FSOUT is determined by the values of the loop filter components. The modulation rate is determined internally by the input frequency and the selected input frequency range.

The Bandwidth of these products can be programmed from as little as 0.6% up to as much as 4.0% by selecting the proper loop filter value. Refer to the Loop Filter Selection chart on page 6 for recommended values. Due to a wide range of application requirements, an external loop filter (LF) is used on the FS786/787 products. The user can select the exact amount of frequency modulation suitable for the application. Using a fixed internal loop filter would severely limit the use of a wide range of modulation bandwidths (Spread %) to a few discrete values.

Refer to FS791/2/4 products for applications requiring 80 to 140 MHz frequency range.

Block Diagram

Figure 1.

Ordering Information

Product Number	Frequency Range	Package Type	Production Flow
FS786BZ	16 – 32 MHz, 64 – 82 MHz	8 Pin 150 mil SOIC	Commercial, 0 to 70°C
FS787BZ	6 – 14 MHz, 34 – 62 MHz	8 Pin 150 mil SOIC	Commercial, 0 to 70°C

Low EMI Spread Spectrum Clock

Pin Configuration

Refer to page 11 for package dimensions.

Pin Description

Pin No.	Pin Name	I/O	TYPE	Description
1/2	Xin / Xout	I/O	Analog	Pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Xin may be connected to TTL/CMOS external clock source. If Xin connected to external clock other than crystal, leave Xout (pin 2) unconnected.
3	D0	I	CMOS/TTL Input frequency range selection. Has internal pull-up re FS786 $\rightarrow 0 = 16 - 32$ MHz, $1 = 64 - 82$ MHz. FS787 $\rightarrow 0 = 6 - 14$ MHz, $1 = 34 - 62$ MHz.	
4	LF	Ι	Analog	Loop Filter. Single ended tri-state output of the phase detector. A passive RC filter is connected to the Loop Filter pin (LF).
5	VSS	Р	Power	Power Supply Ground.
6	REFOUT	0	CMOS/TTL	Non-Modulated Clock Output of Reference Oscillator.
7	FSOUT	0	CMOS/TTL	Modulated Clock Output of Reference Oscillator. Frequency is center spread and 1X of reference clock.
8	VDD	Р	Power	Positive Power Supply.

Table 1. Pin Description

Output Frequency Selection

Product Number	FSOUT Frequency Scaling	Description
FS786	1x	1X Modulated Clock + 1X Non-Modulated Clock
FS787	1x	1X Modulated Clock + 1X Non-Modulated Clock

Table 2. FSOUT SSCG (Modulated Output Clock) Product Selection

<u>FS786/787</u>

Low EMI Spread Spectrum Clock

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of any voltage higher than the absolute maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range, VSS < (Vin or Vout) < VDD. All digital inputs are tied high or low internally. Refers to electrical specifications for operating supply range.

Absolute Maximum Ratings¹

Item	Symbol	Min	Мах	Units
Operating Voltage	VDD	3.0	6.0	VDC
Input, relative to VSS	VIRvss	-0.3	VDD +0.3	VDC
Output, relative to VSS	VORvss	-0.3	VDD +0.3	VDC
AVDD relative to DVDD	ΔVpp	-100	+100	mV
AVSS relative to DVSS	ΔVss	-100	+100	mV
Temperature, Operating	TOP	0	+ 70	° C
Temperature, Storage	TST	- 65	+ 150	⁰ C

Table 3

Electrical Characteristics

Characteristic	Symbol	Min	Тур	Max	Units
Input Low Voltage	VIL	-	-	0.3 * VDD	VDC
Input High Voltage	VIH	0.7 * VDD	-	-	VDC
Input Low Current	IIL	-	-	100	μA
Input High Current	IIH	-	-	100	μA
Output Low Voltage IOL= 10mA, VDD = 5V	VOL	-	-	0.4	VDC
Output High Voltage IOH = 10mA, VDD = 5V	VOH	VDD-1.0	-	-	VDC
Output Low Voltage IOL= 6mA, VDD = 3.3V	VOL	-	-	0.4	VDC
Output High Voltage IOH = 5mA, VDD = 3.3V	VOH	2.4	-	-	VDC
Resistor, Pull Up (Pin-3)	Rpu	60K	125K	200K	Ohms
Input Capacitance (Pin-1)	C _{in1}	-	8	-	pF
Output Capacitance (Pin-2)	C _{in2}	-	8	-	pF
5 Volt Dynamic Supply Current (CL = No Load)	ICC	-	38	-	mA
3.3 Volt Dynamic Supply Current (CL = No Load)	ICC	-	20	-	mA
Short Circuit Current (FSOUT)	ISC	-	25	-	mA
Test measurements performed at VDD	= 3.3V and	d 5.0V ±10%,	Xin = 48 MI	Hz, Ta = 0°C to	70°C

Table 4

Cypress Semiconductor Corporation

¹ **Single Power Supply:** The Voltage on any input or I/O pin cannot exceed the power pin during power-up.

Low EMI Spread Spectrum Clock

Timing Characteristics

Cha	aracteristic	Symbol	Min.	Тур.	Max.	Units
FSOUT Rise Time	@ 10 - 90% at 5 VDC	tTLH	2.0	2.2	2.5	ns
FSOUT Fall Time	@ 10 - 90% at 5 VDC	tTHL	1.7	2.0	2.2	ns
FSOUT Rise Time	@ 0.8 - 2.0V at 5 VDC	tTLH	0.50	0.65	0.75	ns
FSOUT Fall Time	@ 0.8 - 2.0V at 5 VDC	tTHL	0.50	0.65	0.75	ns
FSOUT Rise Time	@ 10 - 90% at 3.3 VDC	tTLH	2.6	2.65	2.9	ns
FSOUT Fall Time	@ 10 - 90% at 3.3 VDC	tTHL	2.0	2.1	2.2	ns
FSOUT Rise Time	@ 0.8 - 2.0V at 3.3 VDC	tTLH	0.8	0.95	1.1	ns
FSOUT Fall Time	@ 0.8 - 2.0V at 3.3 VDC	tTHL	0.78	0.85	0.9	ns
FSOUT Duty Cycle	@ 50% of VDD	TsymF1	45	50	55	%
FSOUT, Cycle to Cycle	Jitter, 48 MHz @ 3.30 VDC	CCJ	-	320	370	ps
FSOUT, Cycle to Cycle	FSOUT, Cycle to Cycle Jitter, 48 MHz @ 5.00 VDC			310	360	ps
FSOUT, Cycle to Cycle	Jitter, 72 MHz @ 3.30 VDC	CCJ	-	270	325	ps
FSOUT, Cycle to Cycle	Jitter, 72 MHz @ 5.00 VDC	CCJ	-	390	440	ps
REFOUT Rise Time	@ 10 – 90% at 5 VDC	tTLH	4.2	4.5	4.9	ns
REFOUT Fall Time	@ 10 – 90% at 5 VDC	tTHL	2.5	2.65	2.8	ns
REFOUT Rise Time	@ 0.8 – 2.0 V at 5 VDC	tTLH	0.74	0.80	0.86	ns
REFOUT Fall Time	@ 0.8 – 2.0 V at 5 VDC	tTHL	0.76	0.85	0.93	ns
REFOUT Rise Time	@ 10 – 90% at 3.3 VDC	tTLH	4.6	4.95	5.3	ns
REFOUT Fall Time	@ 10 - 90% at 3.3 VDC	tTHL	2.5	2.65	2.8	ns
REFOUT Rise Time	@ 0.8 – 2.0 V at 3.3 VDC	tTLH	1.4	1.5	1.6	ns
REFOUT Fall Time	@ 0.8 – 2.0 V at 3.3 VDC	tTHL	1.00	1.1	1.2	ns
Unless otherwise indicat = 48 MHz.	ed, measurements performed at	VDD = 3.3 ai	nd 5.0V \pm 10	%, Ta = 0 [∘] C	to 70°C, CL	= 15pF, Xin

Table 5

Application Selection Table

Select the row containing the frequency for the intended application. Read the device number and D0 programming in cells to the right of Fin. The Modulation Rate is also given below.

Fin (MHz) (pin 1/2)	D0 (pin 3)	Modulation Rate	Device to Use
6 – 14	0	Fin/120	FS787BZB
16 – 32	0	Fin/240	FS786BZB
34 - 62	1	Fin/480	FS787BZB
64 - 82	1	Fin/720	FS786BZB

Low EMI Spread Spectrum Clock

FS786 Loop Filter Selection Chart

The following table provides a list of recommended loop filter values for the FS786. The FS786 is divided into 2 ranges and operates at both 3.3 and 5.0 VDC. The loop filter at the right is representative of the loop filter components in the table below.

	FS786 Recommended Loop Filter Values.							
					-3.3 VDC +/- 5%			
Input	D0	BW = 1.0%	BW = 1.5%	BW = 2.0%	BW = 2.5%	BW = 3.0%	BW = 3.5%	BW = 4.0%
(MHz)	(pin 3)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)
16	0	10000	980	760	580	470	410	385
18	0	1200	750	580	470	415	370	300
20	0	1000	730	470	390	320	220	190
22	0	960	640	410	270	230	200	180
24	0	920	400	250	210	180	160	150
26	0	660	300	220	180	150	140	120
28	0	470	230	180	150	130	100	70 60
30 32	0 0	470 330	180 170	140 120	120 100	100 82	80 68	60 47
-	-							
64 65	1 1	1180 1180	860 850	560 540	410 400	340 330	290 280	230 220
66	1	1180	760	560	350	260	220	210
68	1	1180	750	500	320	260	230	210
70	1	1120	740	470	370	300	240	170
72	1	1160	780	470	300	250	220	190
74	1	1110	770	470	280	230	210	190
76	1	1000	720	440	240	210	190	170
78	1	910	670	270	210	190	170	160
80	1	900	620	260	210	190	170	156
82	1	900	540	250	210	190	170	150
			C7 (pF.) @ +5.0 VDC +/- 5% (R6 = 3.3K)					
Input	D0	BW = 1.0%	BW = 1.5%	BW = 2.0%	BW = 2.5%	BW = 3.0%	BW = 3.5%	BW = 4.0%
Input (MHz)	D0	BW = 1.0% (note 2)	BW = 1.5% (note 2)				BW = 3.5% (note 2)	(note 2)
(MHz) 16	0	(note 2) 2200	(note 2) 860	BW = 2.0% (note 2) 640	BW = 2.5% (note 2) 520	BW = 3.0% (note 2) 420	(note 2) 375	(note 2) 330
(MHz) 16 18	0 0	(note 2) 2200 2200	(note 2) 860 770	BW = 2.0% (note 2) 640 575	BW = 2.5% (note 2) 520 450	BW = 3.0% (note 2) 420 375	(note 2) 375 325	(note 2) 330 275
(MHz) 16 18 20	0 0 0	(note 2) 2200 2200 1200	(note 2) 860 770 600	BW = 2.0% (note 2) 640 575 425	BW = 2.5% (note 2) 520 450 325	BW = 3.0% (note 2) 420 375 250	(note 2) 375 325 170	(note 2) 330 275 220
(MHz) 16 18 20 22	0 0 0 0	(note 2) 2200 2200 1200 870	(note 2) 860 770 600 490	BW = 2.0% (note 2) 640 575 425 290	BW = 2.5% (note 2) 520 450 325 230	BW = 3.0% (note 2) 420 375 250 200	(note 2) 375 325 170 180	(note 2) 330 275 220 170
(MHz) 16 18 20 22 24	0 0 0 0 0	(note 2) 2200 2200 1200 870 720	(note 2) 860 770 600 490 320	BW = 2.0% (note 2) 640 575 425 290 220	BW = 2.5% (note 2) 520 450 325 230 180	BW = 3.0% (note 2) 420 375 250 200 160	(note 2) 375 325 170 180 140	(note 2) 330 275 220 170 130
(MHz) 16 18 20 22 24 24 26	0 0 0 0 0 0	(note 2) 2200 2200 1200 870 720 465	(note 2) 860 770 600 490 320 235	BW = 2.0% (note 2) 640 575 425 290 220 185	BW = 2.5% (note 2) 520 450 325 230 180 150	BW = 3.0% (note 2) 420 375 250 200 160 130	(note 2) 375 325 170 180 140 100	(note 2) 330 275 220 170 130 75
(MHz) 16 18 20 22 24 26 28	0 0 0 0 0 0 0	(note 2) 2200 2200 1200 870 720 465 380	(note 2) 860 770 600 490 320 235 205	BW = 2.0% (note 2) 640 575 425 290 220 185 160	BW = 2.5% (note 2) 520 450 325 230 180 150 130	BW = 3.0% (note 2) 420 375 250 200 160 130 100	(note 2) 375 325 170 180 140 100 90	(note 2) 330 275 220 170 130 75 80
(MHz) 16 18 20 22 24 26 28 30	0 0 0 0 0 0 0 0	(note 2) 2200 2200 1200 870 720 465 380 220	(note 2) 860 770 600 490 320 235 205 178	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85	(note 2) 375 325 170 180 140 100 90 80	(note 2) 330 275 220 170 130 75 80 72
(MHz) 16 18 20 22 24 26 28 30 62	0 0 0 0 0 0 0 0 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4.	(note 2) 860 770 600 490 320 235 205 178 800	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330	(note 2) 375 325 170 180 140 100 90 80 250	(note 2) 330 275 220 170 130 75 80 72 180
(MHz) 16 18 20 22 24 26 28 30 62 64	0 0 0 0 0 0 0 0 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note 4.	(note 2) 860 770 600 490 320 235 205 178 800 720	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285	(note 2) 375 325 170 180 140 100 90 80 250 200	(note 2) 330 275 220 170 130 75 80 72 180 140
(MHz) 16 18 20 22 24 26 28 30 62 64 66	0 0 0 0 0 0 0 0 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note 4. Note 4.	(note 2) 860 770 600 490 320 235 205 178 800 720 630	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240	(note 2) 375 325 170 180 140 100 90 80 250 200 150	(note 2) 330 275 220 170 130 75 80 72 180 140 100
(MHz) 16 18 20 22 24 26 28 30 62 64	0 0 0 0 0 0 0 0 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note 4.	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225	(note 2) 375 325 170 180 140 100 90 80 250 200	(note 2) 330 275 220 170 130 75 80 72 180 140 100 140
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68	0 0 0 0 0 0 0 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note 4. Note 4. Note 4. Note 4.	(note 2) 860 770 600 490 320 235 205 178 800 720 630	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170	(note 2) 330 275 220 170 130 75 80 72 180 140 100
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68 70	0 0 0 0 0 0 0 0 1 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690 650	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365 330	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285 250	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225 210	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170 190	(note 2) 330 275 220 170 130 75 80 72 180 140 100 140 180
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68 70 72	0 0 0 0 0 0 0 0 1 1 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690 650 575	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365 330 340	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285 250 250	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225 210 210	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170 190 190	(note 2) 330 275 220 170 130 75 80 72 180 140 100 140 180 170
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68 70 72 74	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690 650 575 500	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365 330 340 355	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285 250 250 250 245	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225 210 210 210 205	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170 190 190 180	(note 2) 330 275 220 170 130 75 80 72 180 140 140 140 140 140 140 140 15 5 80 140 140 140 15 165
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68 70 72 74 76 78 80	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690 650 575 500 550	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365 330 340 355 330	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285 250 250 250 250 245 230	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225 210 210 205 200	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170 190 190 180 175	(note 2) 330 275 220 170 130 75 80 72 180 140 140 100 140 180 170 165 160
(MHz) 16 18 20 22 24 26 28 30 62 64 66 68 70 72 74 76 78	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	(note 2) 2200 2200 1200 870 720 465 380 220 Note 4. Note	(note 2) 860 770 600 490 320 235 205 178 800 720 630 690 650 575 500 550 600	BW = 2.0% (note 2) 640 575 425 290 220 185 160 135 580 490 400 365 330 340 355 330 290	BW = 2.5% (note 2) 520 450 325 230 180 150 130 95 430 375 320 285 250 250 250 245 230 220	BW = 3.0% (note 2) 420 375 250 200 160 130 100 85 330 285 240 225 210 210 205 200 190	(note 2) 375 325 170 180 140 100 90 80 250 200 150 170 190 190 180 175 170	(note 2) 330 275 220 170 130 75 80 72 180 140 140 140 140 140 140 140 165 160 155

R6

If the value selected from the above chart is not a standard value, use the next available larger value. 1.

All bandwidths indicated are total peak-to-peak spread. 1% = +0.5% to -0.5%. 4% = +2.0% to -2.0%. 2.

3. If C8 is not listed in the chart for a particular BW and Freq., it is not used in the loop filter.

4. Contact Factory for these Loop Filter values and bandwidths less than 1.0%.

Table 7.

Low EMI Spread Spectrum Clock

FS787 Loop Filter Selection Chart

The following table provides a list of recommended loop filter values for the FS787. The FS787 is divided into 2 ranges and operates at both 3.3 and 5.0 VDC. Refer to the Loop Filter schematic on previous page for component references.

	FS787 Recommended Loop Filter Values.							
				C7 (pF.) @	+3.3 VDC +/- 5%	(R6 = 3.3K)		
Input	D0	BW = 1.0%	BW = 1.5%	BW = 2.0%	BW = 2.5%	BW = 3.0%	BW = 3.5%	BW = 4.0%
(MHz)		(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)
6 8	0 0	10,000/1000 10,000/330	1500 960	880 790	750 620	680 500	620 430	540 390
10	0	10,000/330	660	440	350	290	230	200
10	0	800	410	290	215	195	180	160
14	0	560	220	190	150	130	100	75
34	1	10000	860	640	520	430	380	330
36	1	2200	820	620	470	400	330	290
38	1	1500	690	520	410	340	290	240
40	1	960	600	420	340	280	220	160
42	1	940	620	380	275	230	210	180
44	1	950	680	400	250	210	190	170
46	1	900	580	270	220	190	180	165
48	1	790	440	260	210	180	160	140
50	1	660	360	250	190	170	150	140
52	1	470	325	220	185	155	135	120
54	1	470	270	200	170	140	130	100
56	1	445	250	185	150	120	85	47
58	1	430	210	165	130	100	65	33
60	1	295	185	150	120	100	90	82
62	1	270	220	150	120	100	82	68
				C7 (pF.) @	+5.0 VDC +/- 5%	. ,		
Input	D0	BW = 1.0%	BW = 1.5%	BW = 2.0%	BW = 2.5%	BW = 3.0%	BW = 3.5%	BW = 4.0%
(MHz)		(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)	(note 2)
6	0							· · · ·
8		1110	1000	900	800	690	590	490
40	0	1130	940	900 720	800 550	690 450	590 390	270
10	0 0	1130 1000	940 640	900 720 420	800 550 340	690 450 270	590 390 200	270 130
12	0 0 0	1130 1000 740	940 640 330	900 720 420 220	800 550 340 190	690 450 270 170	590 390 200 150	270 130 130
12 14	0 0 0	1130 1000 740 440	940 640 330 230	900 720 420 220 170	800 550 340 190 135	690 450 270 170 100	590 390 200 150 70	270 130 130 47
12 14 32	0 0 0 0	1130 1000 740 440 Note 4.	940 640 330 230 900	900 720 420 220 170 670	800 550 340 190 135 510	690 450 270 170 100 420	590 390 200 150 70 370	270 130 130 47 330
12 14 32 34	0 0 0	1130 1000 740 440 Note 4. Note 4.	940 640 330 230 900 890	900 720 420 220 170 670 635	800 550 340 190 135 510 470	690 450 270 170 100 420 380	590 390 200 150 70 370 325	270 130 130 47 330 270
12 14 32 34 36	0 0 0 1 1	1130 1000 740 440 Note 4. Note 4. Note 4.	940 640 330 230 900 890 870	900 720 420 220 170 670 635 600	800 550 340 190 135 510 470 430	690 450 270 170 100 420 380 340	590 390 200 150 70 370 325 280	270 130 130 47 330 270 210
12 14 32 34 36 38	0 0 0 1 1 1	1130 1000 740 440 Note 4. Note 4.	940 640 330 230 900 890 870 795	900 720 420 220 170 670 635 600 500	800 550 340 190 135 510 470 430 345	690 450 270 170 100 420 380 340 276	590 390 200 150 70 370 325	270 130 47 330 270 210 202
12 14 32 34 36	0 0 0 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4.	940 640 330 230 900 890 870 795 720	900 720 420 220 170 670 635 600	800 550 340 190 135 510 470 430	690 450 270 170 100 420 380 340 276 212	590 390 200 150 70 370 325 280 242	270 130 47 330 270 210 202 194
12 14 32 34 36 38 40	0 0 0 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. Note 4. 930	940 640 330 230 900 890 870 795 720 610	900 720 420 220 170 670 635 600 500 410 320	800 550 340 190 135 510 470 430 345 260 230	690 450 270 170 100 420 380 340 276 212 196	590 390 200 150 70 370 325 280 242 204	270 130 47 330 270 210 202 194 172
12 14 32 34 36 38 40 42	0 0 0 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. Note 4.	940 640 330 230 900 890 870 795 720	900 720 420 220 170 670 635 600 500 410	800 550 340 190 135 510 470 430 345 260	690 450 270 170 100 420 380 340 276 212	590 390 200 150 70 370 325 280 242 204 184	270 130 47 330 270 210 202 194
12 14 32 34 36 38 40 42 44	0 0 0 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. Note 4. 930 710	940 640 330 230 900 890 870 795 720 610 500	900 720 420 220 170 670 635 600 500 410 320 230	800 550 340 190 135 510 470 430 345 260 230 200	690 450 270 170 100 420 380 340 276 212 196 180	590 390 200 150 70 370 325 280 242 204 184 170	270 130 47 330 270 210 202 194 172 150
12 14 32 34 36 38 40 42 44 46	0 0 0 1 1 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. 930 710 1000	940 640 330 230 900 890 870 795 720 610 500 375	900 720 420 220 170 670 635 600 500 410 320 230 255	800 550 340 190 135 510 470 430 345 260 230 200 185	690 450 270 170 100 420 380 340 276 212 196 180 165	590 390 200 150 70 370 325 280 242 204 184 170 150	270 130 47 330 270 210 202 194 172 150 130
12 14 32 34 36 38 40 42 44 46 48	0 0 0 1 1 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. 930 710 1000 1000	940 640 330 230 900 890 870 795 720 610 500 375 250	900 720 420 220 170 670 635 600 500 410 320 230 255 180	800 550 340 190 135 510 470 430 345 260 230 200 185 170	690 450 270 170 100 420 380 340 276 212 196 180 165 150	590 390 200 150 70 370 325 280 242 204 184 170 150 130	270 130 47 330 270 210 202 194 172 150 130 110
12 14 32 34 36 38 40 42 44 46 48 50	0 0 0 1 1 1 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. 930 710 1000 1000 750	940 640 330 230 900 890 870 795 720 610 500 375 250 300	900 720 420 220 170 670 635 600 500 410 320 230 255 180 180	800 550 340 190 135 510 470 430 345 260 230 200 185 170 160	690 450 270 170 100 420 380 340 276 212 196 180 165 150 140	590 390 200 150 70 370 325 280 242 204 184 170 150 130 120	270 130 47 330 270 210 202 194 172 150 130 110 100
12 14 32 34 36 38 40 42 44 46 48 50 52	0 0 0 1 1 1 1 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. 930 710 1000 1000 750 500	940 640 330 230 900 890 870 795 720 610 500 375 250 300 310	900 720 420 220 170 670 635 600 500 410 320 230 255 180 180 180 185	800 550 340 190 135 510 470 430 345 260 230 200 185 170 160 155	690 450 270 170 100 420 380 340 276 212 196 180 165 150 140 130	590 390 200 150 70 370 325 280 242 204 184 170 150 130 120 110	270 130 47 330 270 210 202 194 172 150 130 110 100 85
12 14 32 34 36 38 40 42 44 46 48 50 52 54	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	1130 1000 740 440 Note 4. Note 4. Note 4. Note 4. 930 710 1000 1000 750 500 460	940 640 330 230 900 890 870 795 720 610 500 375 250 300 310 250	900 720 420 220 170 670 635 600 500 410 320 230 255 180 180 185 165	800 550 340 190 135 510 470 430 345 260 230 200 185 170 160 155 130	690 450 270 170 100 420 380 340 276 212 196 180 165 150 140 130 100	590 390 200 150 70 370 325 280 242 204 184 170 150 130 120 110 97	270 130 47 330 270 210 202 194 172 150 130 110 100 85 82

Notes:

1. If the value selected from the above chart is not a standard value, use the next available larger value.

2. All bandwidths indicated are total peak-to-peak spread. 1% = +0.5% to -0.5%. 4% = +2.0% to -2.0%.

3. If C8 is not listed in the chart for a particular BW and Freq., it is not used in the loop filter.

4. Contact Factory for these Loop Filter values and bandwidths less than 1.0%.

Table 8.

Low EMI Spread Spectrum Clock

SSCG Modulation Profile

The digital control input D0 determines the modulation frequency of the FS786 and FS787 products. The modulation frequency is determined by dividing the input frequency by a constant divisor. One of 4 divisor numbers are used, depending on the device and setting of D0. The modulation frequency of the FS786/787 can be determined from Table 8. Select the device and input frequency on Table 8 and read the Modulation Divider. Then, divide the input frequency by the Modulation Divider.

Device	D0	Input Frequency Range (MHz)	Modulation Divider Number
FS787	0	6 to 14	120
FS786	0	16 to 32	240
FS787	1	32 to 62	480
FS786	1	64 to 82	720

Figure 5. Frequency Profile in Time Domain

With the correct loop filter connected to pin 4, the profile in figure 5 above will provide the best EMI reduction. This profile can be seen on a Time Domain Analyzer.

Low EMI Spread Spectrum Clock

Theory of Operation

The FS786/787 devices are Phase Lock Loop (PLL) type clock generators using Direct Digital Synthesis (DDS). By precisely controlling the bandwidth of the output clock, the FS786/787 products become a Low EMI clock generator. The theory and detailed operation of these

products will be discussed in the following sections.

EMI

All clocks generate unwanted energy in their harmonics. Conventional digital clocks are square waves with a duty cycle that is very close to 50 %. Because of the 50/50 duty cycle, digital clocks generate most of their harmonic energy in the odd harmonics, i.e.; 3^{rd} , 5^{th} , 7^{th} etc. It is possible to reduce the amount of energy contained in the fundamental and

harmonics by increasing the bandwidth of the fundamental clock frequency. Conventional digital

clocks have a very high Q factor, which means that all of the energy at that frequency is concentrated in a very narrow bandwidth, consequently, higher energy peaks. Regulatory agencies test electronic equipment by the amount of peak energy radiated from the equipment. By reducing the peak energy at the fundamental and harmonic frequencies, the equipment under test is able to satisfy agency requirements for Electro-Magnetic Interference (EMI). Conventional methods of reducing EMI have been to use shielding, filtering, multi-layer PCB's etc. The FS786 and 787 use the approach of reducing the peak energy in the clock by increasing the clock bandwidth, and lowering the Q of the clock.

SSCG

The FS786/787 products use a unique method of modulating the clock over a very narrow bandwidth and controlled rate of change, both peak to peak and cycle to cycle. The FS78x products take a narrow band digital reference clock in the range 6 - 82 MHz and produce a clock that sweeps between a controlled start and stop frequency and precise rate of change. To understand what happens to an SSCG clock, consider that we have a 20 MHz clock with a 50 % duty cycle. From a 20 MHz clock we know the following;

Clock Frequency = Fc = 20 MHz. Clock Period = Tc = 1/20 MHz=50 ns

Consider that this 20 MHz clock is applied to the Xin input of the FS78x, either as an externally driven clock or as the result of a parallel resonant crystal connected to pins 1 and 2 of the FS78x. Also consider that the products are operating from a 5-volt DC power supply and the loop filter is set for a total bandwidth spread of 2%. Refer to table 6 on page 6.

From the above parameters, the output clock at FSOUT will be sweeping symmetrically around a center frequency of 20 MHz.

The minimum and maximum extremes of this clock will be +200 kHz and -200 kHz. So, we have a clock that is sweeping from 19.8 MHz to 20.2 MHz and back again. If we were to look at this clock on a spectrum analyzer we would see the picture in figure 7. Keep in mind that this is a drawing of a perfect clock with no noise.

Figure 7.

APPROVED PRODUCT

FS786/787

Low EMI Spread Spectrum Clock

We see that the original 20 MHz reference clock is at the center Frequency, Cf, and the minimum and maximum extremes are positioned symmetrically about the center frequency. This type of modulation is called **Center-Spread**. Figure 8 shows a 20 MHz clock, as it would be seen on an oscilloscope. The top trace is the non-modulated reference clock,. The bottom trace is the modulated clock at pin 6. From this comparison chart you can see that the frequency is decreasing and the period of each successive clock is increasing. The Tc measurements on the left and right of the bottom trace indicate the max. and min. extremes of the clock. Intermediate clock changes are small and accumulate to achieve the total period deviation. The reverse of this figure would show the clock going from min. extreme back to the high extreme.

Figure 8. Period Comparison Chart

Looking at figure 7, you will note that the peak amplitude of the 20 MHz non-modulated clock is higher than the wideband modulated clock. This difference in peak amplitudes between modulated and unmodulated clocks is the reason why SSCG clocks are so effective in digital systems. This figure refers to the fundamental frequency of a clock. A very important characteristic of the SSCG clock is that the bandwidth of the fundamental frequency is multiplied by the harmonic number. In other words, if the bandwidth of a 20 MHz clock is 200 kHz, the bandwidth of the 3rd harmonic will be 3 times 200, or 600 kHz. The amount of bandwidth is relative to the amount of energy in the clock. Consequently, the wider the bandwidth, the greater the energy reduction of the clock.

Most applications will not have a problem meeting agency specifications at the fundamental frequency. It is the higher harmonics that usually cause the most problems. With an SSCG clock, the bandwidth and peak energy reduction increases with the harmonic number. Consider that the 11th harmonic of a 20 MHz clock is 220 MHz. With a total spread of 200 kHz at 20 MHz, the spread at the 11th harmonic would be 2.20 MHz which greatly reduces the peak energy content. It is typical to see as much as 12 to 18 dB. reduction at the higher harmonics, due to a modulated clock.

The difference in the peak energy of the modulated clock and the non-modulated clock in typical applications will see a 2 - 3 dB. reduction at the fundamental and as much as 8 - 10 dB. reduction at the intermediate harmonics, 3^{rd} , 5^{th} , 7^{th} etc. At the higher harmonics, it is quite possible to reduce the peak harmonic energy, compared to the unmodulated clock, by as much as 12 to 18 dB.

Low EMI Spread Spectrum Clock

Application Notes and Schematic

The schematic at the right is configured for the following parameters;

Package selected = FS786

By selecting the FS786 or the FS787 and selecting D0 low or high, any input frequency from 6 to 82 MHz can be modulated. In addition to providing a modulated Low EMI clock, the FS786 and FS787 also provide a non-modulated clock which is a buffered copy of the reference oscillator.

Package Drawing and Dimensions

<u>FS786/787</u>

Low EMI Spread Spectrum Clock

8 Pin SOIC Outline Dimensions

		INCHES		MILLIMETERS		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	0.061	0.064	0.068	1.55	1.63	1.73
A ₁	0.004	0.006	0.0098	0.127	0.150	0.250
A ₂	0.055	0.058	0.061	1.40	1.47	1.55
В	0.0138	0.016	0.0192	0.35	0.41	0.49
С	0.0075	0.008	0.0098	0.19	0.20	0.25
D	0.189	0.194	0.196	4.80	4.93	4.98
E	0.150	0.155	0.157	3.81	3.94	3.99
е	C	0.050 BS	C	1.270 BSC		
Н	.230	.236	.244	5.84	5.99	6.20
h	0.010	0.013	0.016	0.25	0.33	0.41
а	0°	5°	8 °	0°	5°	8°
L	0.016	0.025	0.035	0.41	0.64	0.89

Cypress Semiconductor Corporation Disclaimer

Cypress Semiconductor Corporation reserves the right to change or modify the information contained in this data sheet, without notice. Cypress Semiconductor Corporation does not assume any liability arising out of the application or use of any product or circuit described herein Cypress Semiconductor Corporation does not convey any license under its patent rights nor the rights of others. Cypress Semiconductor Corporation does not authorize its products for use as critical components in life-support systems or critical medical instruments, where a malfunction or failure may reasonably be expected to result in significant injury to the user.

Low EMI Spread Spectrum Clock

Document Title: FS786/787 Low EMI Spread Spectrum Clock Document Number: 38-07031							
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change			
**	106959	06/11/01	IKA	Convert from IMI to Cypress			
*A	122680	12/14/02	RBI	Added power up requirements to Absolute Maximum Ratings information.			