
FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide
Rev. 2.3 — 1 May 2018 User guide

1 Introduction

This document describes the embedded firmware found in all derivatives of the
FXTH87xx22 device.

The intended audience for this document is firmware architects, developers, coders and
testers working with the FXTH87xx22 device.

Firmware for the FXTH87xx22 is derived directly from MPXY86xx's Firmware Rel04.
Known bugs are carried over, and noted in this document when appropriate.

This document is divided into three sections: This introduction, a section describing
global variables and standard formats used throughout the functions, and a third section
describing each function.

2 Globals and formats

2.1 Global variables

2.1.1 TPMS_INTERRUPT_FLAG
The TPM1Ch0 and TPM1Ch1 interrupt vectors are exchanged compared to what is
defined in the product specification. This implies that upon interrupt of TPM1Ch0 the
user interrupt vector Vtpm1ch1 located at address $DFF2:DFF3 will be accessed. And
upon interrupt of TPM1Ch1 the user interrupt vector Vtpm1ch0 located at address
$DFF4:DFF5 will be accessed.

This global variable keeps track of interrupts that have occurred. FXTH87xx22
Embedded Firmware uses it to keep track of expected interrupts. It can also be utilized
by the user for its own purposes. If an LFR interrupt occurs while a firmware function
is under execution, the LFR User Interrupt Vector will not be accessed, and the bit 2
(Table 1) will be the only indication available. Users should check this bit, either prior to
entering the firmware function or after the firmware function, to assure LF interrupts are
not missed. Also, a number of firmware functions utilize the Stop1 or Stop4 modes, which
disable the hardware watchdog block. In order to provide a back-up recovery, users
should utilize either the RTI or PWU which can be programmed for interrupt if a software
or firmware routine has consumed too much time. The watchdog is automatically
restarted when the program goes back in RUN mode.

The TPMS_INTERRUPT_FLAG is not cleared automatically. Users must clear this
variable after power-on-reset.

Table 1 shows the TPMS_INTERRUPT_FLAG format. The trigger condition column
describes what is necessary for that flag to be set.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
2 / 45

Table 1. TPMS_INTERRUPT_FLAG format and trigger conditions
Flag Bit Trigger condition
LVD Interrupt 7 LVD interrupt entered.

PWU Interrupt 6 PWU interrupt entered.

TOF Interrupt 5 TOF interrupt entered.

LFR Error Interrupt 4 LFR interrupt entered and LFERF bit of the LFS register is set.

ADC Interrupt 3 ADC interrupt entered.

LFR Interrupt 2 LFR interrupt entered and LFERF bit of the LFS register is clear.

RTI Interrupt 1 RTI interrupt entered.

KBI Interrupt 0 KBI interrupt entered.

TPMS_INTERRUPT_FLAG is 1 byte long and is located at address $8F. Users must
account for this variable when developing for the FXTH87xx22.

2.2 Measurement error format

2.2.1 Definition of Signal Ranges
Each measured parameter (pressure, voltage, temperature, and acceleration) results
from an ADC conversion of an analog signal. This ADC result may then be passed by the
firmware to the application software as either the raw ADC result or further compensated
and scaled for an output between one and the maximum digital value minus one. The
minimum digital value of zero and the maximum digital value are reserved as error
codes.

The signal ranges and their significant data points are shown in Figure 1. In this definition
the signal source would normally output a signal between SINLO and SINHI. Due to
process, temperature and voltage variations this signal may increase its range to SINMIN
to SINMAX. In all cases the signal will be between the supply rails, so that the ADC
will convert it to a range of digital numbers between 0 and 1023 (or 0 and 4095 in the
case of temperature readings). These digital numbers will have corresponding DINMIN,
DINLO, DINHI, and DINMAX values. The ADC digital value is taken by the firmware and
compensated and scaled to give the required output code range.

Digital input values below DINMIN and above DINMAX are immediately flagged as being out
of range and generate error bits and the output is forced to the corresponding railed-high
or railed-low values.

Digital values below DINLO (but above DINMIN) or above DINHI (but not DINMAX) will most
likely cause an output that would be less than 1 or greater than 510, respectively. These
cases are considered underflow or overflow, respectively. Underflow results will be forced
to a value of 1. Overflow results will be forced to a value of 510.

Digital values between DINLO and DINHI will normally produce an output between 1 to
510 (for a 9-bit result). In some isolated cases due to compensation calculations and
rounding the result may be less than 1 or greater than 510, in which case the underflow
and overflow rule mentioned above is used.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
3 / 45

Figure 1. Measurement Signal Range Definitions

2.2.2 Error Status Format
FXTH87xx22 Embedded Firmware functions that return a status byte commonly do so
using the error fields described in Table 2.

Table 2. Error Status Fields
Field Description
BIT7 - ADCERR ADC Error — This status bit indicates an error was detected when

performing an ADC test within the TPMS_WIRE_AND_ADC_CHECK
routine.
0 — ADC operating as expected.
1 — ADC returned unexpected reading.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
4 / 45

Field Description
BIT6 – TERR Temperature Measurement Error — This status bit indicates an error was

detected by a ADC reading of the temperature sensor that is outside of the
normally accepted range.
0 — Temperature error not detected in last firmware subroutine call.
1 — Temperature error detected in last firmware subroutine call.

BIT5 – VERR Voltage Measurement Error — This status bit indicates an error was
detected by a ADC reading of the voltage reference that is outside of the
normally accepted range.
0 — Voltage error not detected in last firmware subroutine call.
1 — Voltage error detected in last firmware subroutine call.

BIT4 – AZERR Z-Axis Accelerometer Measurement Error (if applicable) — This status
bit indicates an error was detected by a bonding wire failure to the g-cell or
a ADC reading of the Z-axis accelerometer that is outside of the normally
accepted range.
0 — Acceleration error not detected in last firmware subroutine call.
1 — Acceleration error detected in last firmware subroutine call.

BIT3 – AXERR X-Axis Accelerometer Measurement Error (if applicable) — This status
bit indicates an error was detected by a bonding wire failure to the g-cell or
a ADC reading of the X-axis accelerometer that is outside of the normally
accepted range.
0 — Acceleration error not detected in last firmware subroutine call.
1 — Acceleration error detected in last firmware subroutine call.

BIT2 – PERR Pressure Measurement Error — This status bit indicates an error was
detected by a parity fault in the P-Chip trim, bonding wire failure to the
P-Chip or a ADC reading of the pressure that is outside of the normally
accepted range.
0 — Pressure error not detected in last firmware subroutine call.
1 — Pressure error detected in last firmware subroutine call.

BIT1 – BONDERR Bond Wire Error — This status bit indicates an error was detected in any
of the bond wire checks of the g-cell or P-cell.
0 — Bond wire error not detected in last firmware subroutine call.
1 — Bond wire error detected in last firmware subroutine call.

BIT0 – OVFLOW Calculation Overflow/Underflow — This status bit indicates that
a compensated measurement of pressure, temperature, voltage or
acceleration resulted in a digital output code outside of the expected range.
The output value will be clipped to the nearest highest or lowest allowed
value and the status bit will be set.
0 — Overflow/underflow not detected in last firmware subroutine call.
1 — Overflow/underflow detected in last firmware subroutine call.

2.3 Universal Uncompensated Measurement Array (UUMA) format
The FXTH87xx22's measurement routines are divided into two subsets: routines
that return uncompensated measurements, and routines that take uncompensated
measurements as arguments and return compensated measurements.

In order to be consistent and keep the number of CPU cycles down, all uncompensated
measurement routines will return data following the array format described in Table 3,
and all compensating routines will take data from the same array.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
5 / 45

Table 3. Universal Uncompensated Measurement Array
Index Content
0 Uncompensated voltage

1 Uncompensated temperature

2 Uncompensated pressure

3 Uncompensated X-Axis acceleration

4 Uncompensated Z-Axis acceleration

This array is referred to as Universal Uncompensated Measurement Array (UUMA). It
can be located anywhere the user decides.

Each element must be 16-bits long (two bytes) regardless of what the actual bit-width of
the measurement is.

Each individual uncompensated measurement routine will only update its corresponding
item. For example, calling the TPMS_READ_VOLTAGE routine will only modify the
voltage element of the array. The rest will remain unchanged.

Compensation routines do not modify any elements in the UUMA.

2.4 Simulated SPI interface Signal Format
The FXTH87xx22 includes three routines (TPMS_MSG_INIT, TPMS_MSG_READ
and TPMS_MSG_WRITE) that, when used together, allow the user to perform serial
communication with the device through a simulated SPI interface.

The following assumptions are made:

• Only two pins are used: PTA0 for data (both incoming and outgoing) and PTA1 for
clock. No slave select is included by default, but the user may use any other pin if
required.

• The data pin has a pullup resistor enabled.
• The FXTH87xx22 will be a master device (the FXTH87xx22 will provide the clock).
• Data can be read/written eight bits at a time.
• Speed of the interface is dependant on bus clock settings.
• Data is transferred MSB first.
• A single line will be used for both sending and receiving data (BIDIROE = SET

according to NXP nomenclature).
– At the clock's rising edge, the master will place data on the pin. It will be valid until the

clock's falling edge. The slave must not drive the line during this period.
– At the clock's falling edge, the master will make the data pin an input and will "listen"

for data. The slave must then place data on the data line until the clock's rising edge.
• Clock Polarity = 0 (Normally low).
• Clock Phase = 1 (First half is high).

Figure 2 shows the details of the simulated SPI interface.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
6 / 45

Figure 2. Description of the physical layer on the FXTH87xx22 Simulated SPI interface

For further information on the use of the Simulated SPI interface routines, refer
Section 3.2.30, Section 3.2.31, and Section 3.2.32.

2.5 Rapid Decompression Event Array (T_RDE) Format
The FXTH87xx22 includes a routine called TPMS_RDE_ADJUST_PRESSURE that
requires a pointer to an array of elements using a custom format called T_RDE. Said
format is easily manageable using a typedef instruction as shown in Example 1.

Example 1. Sample typedef for a T_RDE array

typedef struct
{
 UINT16 u16CompPress; /* I/O 9-bit Compensated pressure reading */
 UINT8 u8ElapsedTime; /* I Elapsed time from previous reading */
 UINT16 u16WAvg; /* O Weighed average for running pressure */
 UINT8 u8PRes; /* O 8-bit pressure reserve value */
 UINT8 u8PMin; /* O 8-bit minimum pressure value */
 UINT8 u8RDEStatusFlags; /* O Contains flags for Clock and RDE Event */
 UINT16 u16RDEBailTimeOut; /* O Seconds to 60 mins bail-out */
 UINT8 u8RDETimeToAvg; /* O Seconds to next averaging event */}
T_RDE;

As shown by the comments, only the u16CompPress and u8ElapsedTime
elements of this array should be edited by the user; the rest will be updated by the
TPMS_RDE_ADJUST_PRESSURE function.

In order for TPMS_RDE_ADJUST_PRESSURE to work correctly, the T_RDE variable
must be declared as a global and must reside in an NVM location.

For more information on TPMS_RDE_ADJUST_PRESSURE, refer to Section 3.2.47.

2.6 LFR registers initialized by firmware
Some LFR registers are touched by firmware when taking the reset vector and before
giving control to the user. The goal of this action is to configure the LFR module in the
best-known configuration for Manchester-encoded reception.

LFR registers will be configured differently depending on the user-selected sensitivity.
Table 4 and Table 5 describe these settings.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
7 / 45

Table 4. Customer-configurable TMPS and LF Register with SENS = 1
Page-0 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS

LFCTL2 LFSTM LFONTM

LFCTL3 LFDO TOGMOD SYNC LFCDTM

LFCTL4 LFDRIE LFERIE LFCDIE LFIDIE DECEN VALEN TIMOUT

LFS LFDRF LFERF LFCDF LFIDF LFOVF LFEOMF LPSM LFIAK

LFDATA RXDATA

LFIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

LFIDH ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS = 2

LFCTRLE — — — — — 0 0 0

LFCTRLD 1 0 DEQS 1 1 1 0 1

LFCTRLC 0 0 0 1 AZEN LOWQ DEQEN

LFCTRLB 1 1 LFFAF LFCAF LFPOL 1 1 0

LFCTRLA — — — — LFCC

TRIM1 — — — — — — — —

TRIM2 — — — — — — — —

Shaded cells show register touched by firmware; loaded value is displayed.

Table 5. Customer-configurable TMPS and LF Register with SENS = 2
Page-0 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS

LFCTL2 LFSTM LFONTM

LFCTL3 LFDO TOGMOD SYNC LFCDTM

LFCTL4 LFDRIE LFERIE LFCDIE LFIDIE DECEN VALEN TIMOUT

LFS LFDRF LFERF LFCDF LFIDF LFOVF LFEOMF LPSM LFIAK

LFDATA RXDATA

LFIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

LFIDH ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS = 2

LFCTRLE — — — — — 0 0 0

LFCTRLD 1 0 DEQS 1 1 1 0 1

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
8 / 45

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTRLC 0 0 0 1 AZEN LOWQ DEQEN

LFCTRLB 1 1 LFFAF LFCAF LFPOL 1 1 0

LFCTRLA — — — — LFCC

TRIM1 — — — — — — — —

TRIM2 — — — — — — — —

 Shaded cells show register touched by firmware; loaded value is displayed.

3 Firmware Functions

3.1 Firmware jump table
The FXTH87xx22 device contains an embedded firmware function jump table to allow
programmers to reference any function through a function pointer to an absolute address.
This helps isolate NXP firmware from the user's application. Table 6 shows a list of all
firmware functions, their address, and to which FXTH87xx22 derivative they apply.

For a description of how to implement pointers to fixed addresses using the C language,
please refer to Manual_Compiler_HC08.pdf (part of the CodeWarrior package).

Table 6.  FXTH87xx22's Firmware Function jump table
Absolute
Address

Return type Function Reference

$E000 void TPMS_RESET Section 3.2.1

$E003 UINT8 TPMS_READ_VOLTAGE Section 3.2.2

$E006 UINT8 TPMS_COMP_VOLTAGE Section 3.2.3

$E009 UINT8 TPMS_READ_TEMPERATURE Section 3.2.4

$E00C UINT8 TPMS_COMP_TEMPERATURE Section 3.2.5

$E00F UINT8 TPMS_READ_PRESSURE Section 3.2.6

$E012 UINT8 TPMS_COMP_PRESSURE Section 3.2.7

$E015 UINT8 TPMS_READ_ACCELERATION_X Section 3.2.8

$E018 UINT8 TPMS_READ_DYNAMIC_ACCEL_X Section 3.2.9

$E01B UINT8 TPMS_COMP_ACCELERATION_X Section 3.2.10

$E01E UINT8 TPMS_READ_ACCELERATION_Z Section 3.2.11

$E021 UINT8 TPMS_READ_DYNAMIC_ACCEL_Z Section 3.2.12

$E024 UINT8 TPMS_COMP_ACCELERATION_Z Section 3.2.13

$E027 UINT8 TPMS_READ_ACCELERATION_XZ Section 3.2.14

$E02A UINT8 TPMS_READ_DYNAMIC_ACCEL_XZ Section 3.2.15

$E02D UINT8 TPMS_COMP_ACCELERATION_XZ Section 3.2.16

$E030 UINT8 TPMS_READ_V0 Section 3.2.17

$E033 UINT8 TPMS_READ_V1 Section 3.2.18

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
9 / 45

Absolute
Address

Return type Function Reference

$E036 UINT8 TPMS_LFOCAL Section 3.2.19

$E039 UINT8 TPMS_MFOCAL Section 3.2.20

$E03C void TPMS_RF_ENABLE Section 3.2.21

$E03F void TPMS_RF_RESET Section 3.2.22

$E042 void TPMS_RF_READ_DATA Section 3.2.23

$E045 void TPMS_RF_READ_DATA_REVERSE Section 3.2.24

$E048 void TPMS_RF_WRITE_DATA Section 3.2.25

$E04B void TPMS_RF_WRITE_DATA_REVERSE Section 3.2.26

$E04E void TPMS_RF_CONFIG_DATA Section 3.2.27

$E051 — Reserved —

$E054 void TPMS_RF_SET_TX Section 3.2.28

$E057 void TPMS_RF_DYNAMIC_POWER Section 3.2.29

$E05A void TPMS_MSG_INIT Section 3.2.30

$E05D UINT8 TPMS_MSG_READ Section 3.2.31

$E060 UINT8 TPMS_MSG_WRITE Section 3.2.32

$E063 UINT8 TPMS_CHECKSUM_XOR Section 3.2.33

$E066 UINT8 TPMS_CRC8 Section 3.2.34

$E069 UINT16 TPMS_CRC16 Section 3.2.35

$E06C UINT16 TPMS_SQUARE_ROOT Section 3.2.36

$E06F void TPMS_READ_ID Section 3.2.37

$E072 void TPMS_LF_ENABLE Section 3.2.38

$E075 UINT8 TPMS_LF_READ_DATA Section 3.2.39

$E078 UINT8 TPMS_WIRE_AND_ADC_CHECK Section 3.2.40

$E07B void TPMS_FLASH_WRITE Section 3.2.41

$E07E UINT16 TPMS_FLASH_CHECK Section 3.2.42

$E081 UINT8 TPMS_FLASH_ERASE Section 3.2.43

$E084 UINT8 TPMS_FLASH_PROTECTION Section 3.2.44

$E087 — Reserved —

$E08A void TPMS_MULT_SIGN_INT16 Section 3.2.45

$E08D UINT16 TPMS_WAVG Section 3.2.46

E090 UINT8 TPMS_RDE_ADJUST_PRESSURE Section 3.2.47

3.2 Function description
The following function descriptions include stack sizes and approximate duration.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
10 / 45

Stack sizes have been calculated by executing each routine and measuring the amount
of memory utilized. Unless noted, they represent the maximum stack the function will
utilize.

Duration estimates are performed on one part at room temperature. They are intended to
serve as a guideline for typical execution time.

3.2.1 void TPMS_RESET (void)
• Description: This function is called when taking the reset vector. It will reset the

Stack Pointer to the last RAM location and jump to the location stored by the user in
$DFFE:DFFF. No further initialization is performed.

• Stack size: 3 bytes
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: Stack
• Input parameters:

– None
• Returns:

– void

3.2.2 UINT8 TPMS_READ_VOLTAGE (UINT16 *u16UUMA)
• Description: Performs a 10-bit uncompensated voltage measurement and places it

in the UUMA. While waiting for the ADC to converge, this function goes into STOP4. If
the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit.
– If the ADC value is over or under the normal operating condition, the "voltage error"

status flag will be set. The expected voltage result will be forced to either "0" or
"1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
– Measurements below 2.1 V are not guaranteed for accuracy.

• Stack size: 23 bytes
• Approx. Duration: 100 μs
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: ADC, bandgap.
• Input parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated voltage result will be
updated.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 7.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
11 / 45

Table 7. Valid output conditions for TPMS_READ_VOLTAGE
u8Status
Value

Measurement Value Condition

$20 $03FF Uncompensated voltage reading outside of valid
range (high).

$20 $0000 Uncompensated voltage reading outside of valid
range (low).

$80 Undefined Uncompensated voltage reading not acquired.

$00 Between $0001 - $03FE Valid uncompensated voltage reading.

Warning: The Bandgap bit (BIT0 in the SPMSC1 register) must be set prior to calling this
function for results to be valid.

3.2.3 UINT8 TPMS_COMP_VOLTAGE (UINT8 *u8CompVoltage, *UINT16
u16UUMA)
• Description: Performs an 8-bit compensated voltage measurement. It is the user's

responsibility to ensure that updated and valid uncompensated voltage reading is
available in the UUMA for this routine to return a meaningful value.
– If Vout < 2.1 V, u8Voltage will be 1 and the "over/underflow" status flag will be set.
– Measurements below 2.1 V are not guaranteed for accuracy.
– If Vout ≥ 3.75 V, result will be $FE and the "over/underflow" status flag will be set.
– For repeatability data, refer to the FXTH87x06 data sheet.

• Stack size: 31 bytes
• Approx. Duration: 216 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input parameters:

– UINT8 *u8Voltage: Updated 8-bit compensated voltage result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage will be utilized from this array.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 8.

Table 8. Valid output conditions for TPMS_COMP_VOLTAGE
u8Status
Value

Measurement Value Condition

$01 $FE Compensated voltage reading outside of valid
range (high).

$01 $01 Compensated voltage reading outside of valid
range (low).

$00 Between $01 – $FE Valid compensated voltage reading.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
12 / 45

3.2.4 UINT8 TPMS_READ_TEMPERATURE (UINT16 *u16UUMA)
• Description: Performs a 12-bit uncompensated temperature measurement and places

it in the UUMA. While waiting for the ADC to converge, this function goes into STOP4.
If the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit.
– If the ADC value is over or under the normal operating condition, the "temperature

error" status flag will be set. The expected temperature result will be forced to
either "0" or "4095." (rail high or rail low). If the Low Voltage Warning Flag (LVWF)
hardware bit is set, it will flag it accordingly as well.

– If the ADC value is over or under the normal operating condition, the "temperature
error" status flag will be set. The expected temperature result will be forced to either
"0" or "4095." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 18 bytes
• Approx. Duration: 219 μs
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: ADC, bandgap.
• Input parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 12-bit uncompensated temperature result will be
updated.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 9.

Table 9. Valid output conditions for TPMS_READ_TEMPERATURE
u8Status
Value

Measurement Value Condition

$40 $0FFF Uncompensated temperature reading outside of
valid range (high).

$40 $0000 Uncompensated temperature reading outside of
valid range (low).

$60 $0FFF Uncompensated temperature reading outside of
valid range (high), and LVWF set.

$60 $0000 Uncompensated temperature reading outside of
valid range (low), and LVWF set.

$80 Undefined Uncompensated temperature reading not acquired.

$A0 Undefined Uncompensated temperature reading not acquired,
and LVWF set.

$00 Between $0001 – $0FFE Valid uncompensated temperature reading.

$20 Between $0001 – $0FFE Valid uncompensated temperature reading, LVWF
set.

Warning: The Bandgap bit (BIT0 in the SPMSC1 register) must be set prior to calling this
function for results to be valid.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
13 / 45

3.2.5 UINT8 TPMS_COMP_TEMPERATURE (UINT8 *u8Temp, UINT16 *u16UUMA)
• Description: Performs an 8-bit compensated temperature measurement. It is the

user's responsibility to ensure that updated and valid uncompensated temperature
reading is available in the UUMA for this routine to return a meaningful value.
– If Tout < -40°C, u8Temp will be 1 and the "over/underflow" status flag will be set.
– If Tout ≥ 200°C, u8Temp will be $FE and the "over/underflow" status flag will be set.

• Stack size: 30 bytes
• Approx. Duration: 231 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input parameters:

– UINT8 *u8Temp: Updated 8-bit compensated temperature result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated temperature will be utilized from this
array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 10.

Table 10. Valid output conditions for TPMS_COMP_TEMPERATURE
u8Status
Value

Measurement Value Condition

$01 $FE Compensated temperature reading outside of valid
range (high).

$01 $01 Compensated temperature reading outside of valid
range (low).

$00 Between $01 – $FE Valid compensated temperature reading.

3.2.6 UINT8 TPMS_READ_PRESSURE (UINT16 *u16UUMA, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated pressure measurement and places it

in the UUMA. While waiting for the ADC to converge, this function goes into STOP4. If
the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit. If the LVWF (Low Voltage Warning Flag) hardware
bit is set, it will flag it accordingly as well.
– If the ADC value is over or under the normal operating condition, the "pressure error"

status flag will be set. The expected pressure result will be forced to either "0" or
"1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 28 bytes
• Approx. Duration: 2848 μs (avg of 1); 3064 μs (avg of 4).
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
14 / 45

• Input parameters:
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Only the 10-bit uncompensated pressure result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
be set to 1, 2, 4, 8, or 16.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 11.

Table 11. Valid output conditions for TPMS_READ_PRESSURE
u8Status
Value

Measurement Value Condition

$04 $03FF Uncompensated pressure reading outside of valid
range (high).

$04 $0000 Uncompensated pressure reading outside of valid
range (low).

$24 $03FF Uncompensated pressure reading outside of valid
range (high), and LVWF set.

$24 $0000 Uncompensated pressure reading outside of valid
range (low), and LVWF set.

$80 $0000 Uncompensated pressure reading not acquired

$A0 $0000 Uncompensated pressure reading not acquired,
and LVWF set.

$00 Between $0001 – $03FE Valid uncompensated pressure reading.

$00 Between $0001 – $03FF Valid uncompensated pressure reading, and LVWF
set.

3.2.7 UINT8 TPMS_COMP_PRESSURE (UINT16 *u16CompPressure, UINT16
*u16UUMA)
• Description: Performs an 9-bit compensated pressure measurement. It is the user's

responsibility to ensure that updated and valid uncompensated voltage, temperature
and pressure readings are available in the UUMA for this routine to return a meaningful
value.
– If either the temperature or supply voltage measurements inherent to this function

result in a fault, the pressure reading will be forced to 0 and the appropriate pressure,
temperature and/or voltage flags will be set in the status flag.

– If Pout < 100 kPa, the "over/underflow" status flag will be set, and u16CompPressure
will be forced to $001.

– If Pout ≥ 900 kPa, u16CompPressure will be $1FE and the "over/underflow" status
flag will be set.

– If the passed uncompensated voltage measurement is estimated to be under the
guaranteed operational region, the routine will set the "Voltage" status flag. The
accuracy of the returned value is not guaranteed.

– For repeatability data, refer to the FXTH87x06 data sheet.
• Stack size: 46 bytes
• Approx. Duration: 900 μs
• Power management: This function executes entirely in RUN mode.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
15 / 45

• Interrupt management: This function does not await interrupts. It is not affected by
interrupts either.

• Resources: UUMA
• Input parameters:

– UINT16 *u16Pressure: Updated 9-bit compensated pressure result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage, temperature and pressure will be
taken from this array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 12.

Table 12. Valid output conditions for TPMS_COMP_PRESSURE
u8Status
Value

Measurement
Value

Condition

$01 $01FE Compensated pressure reading outside of valid range (high).

$01 $0001 Compensated pressure reading outside of valid range (low).

$21 $01FE Compensated pressure reading outside of valid range (high),
and uncompensated voltage suspected to be below valid
operating range for this function.

$21 $0001 Compensated pressure reading outside of valid range (low),
and uncompensated voltage suspected to be under below
operating range for this function.

$20 Between $0001 –
$01FE

Uncompensated voltage suspected to be below valid operating
range for this function; The compensated reading is not
guaranteed for accuracy.

$00 Between $0001 –
$01FE

Valid compensated pressure reading.

3.2.8 UINT8 TPMS_READ_ACCELERATION_X (UINT16 *u16UUMA, UINT8 u8Avg,
UINT8 u8FiltSelect, UINT8 u8DynamicOffset)
• Description: Performs an uncompensated 10-bit measurement. While waiting for

the ADC to converge, this function goes into STOP4. If the ADC, for an unexpected
reason, fails to converge, this function has a built-in time-out: After five continuous
non-ADC interrupts, the function will assume a failed ADC reading, flag it accordingly,
and exit. If the LVWF (Low Voltage Warning Flag) hardware bit is set, it will flag it
accordingly as well.
– If the ADC value is over or under the normal operating condition, the "acceleration

error" status flag will be set. The expected acceleration result will be forced to either
"0" or "1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 33 bytes
• Approx. Duration: 2869 μs (500-Hz filter, 1 reading), 4232 μs (250-Hz filter, 1

reading).
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
16 / 45

• Input parameters:
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Only the 10-bit uncompensated acceleration result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
be set to 1, 2, 4, 8, or 16.

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8 u8DynamicOffset: Selects the offset setting for the appropriate acceleration
reading. Default is 6.

Table 13. u8DynamicOffset valid values
Offset Index Offset when result of function is 256 counts assuming

standard trim. Span does not change.
0 –70 g

1 –60 g

2 –50 g

3 –40 g

4 –30 g

5 –20 g

6 –10 g

7 0 g (default)

8 10 g

9 20 g

10 30 g

11 40 g

12 50 g

13 60 g

14 70 g

15 80 g

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 14.

Table 14. Valid output conditions for TPMS_READ_ACCELERATION_X
u8Status
Value

Measurement Value Condition

$04 $03FF Uncompensated acceleration reading outside of
valid range (high).

$04 $0000 Uncompensated acceleration reading outside of
valid range (low).

$24 $03FF Uncompensated acceleration reading outside of
valid range (high), and LVWF set.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
17 / 45

u8Status
Value

Measurement Value Condition

$24 $0000 Uncompensated acceleration reading outside of
valid range (low), and LVWF set.

$80 $0000 Uncompensated acceleration reading not acquired.

$A0 $0000 Uncompensated acceleration reading not acquired,
and LVWF set.

$00 Between $0001 – $03FE Valid uncompensated acceleration reading.

$20 Between $0001 – $03FE Valid uncompensated acceleration reading, but
LVWF set.

3.2.9 UINT8 TPMS_READ_DYNAMIC_ACCEL_X (UINT8 u8Filter, UINT8* u8Offset,
UINT16* u16UUMA)
• Description: This function automatically executes a

TPMS_READ_ACCELERATION_X measurement with a given initial dynamic offset. If
the result is too high or too low, it will change the dynamic offset value and re-execute
TPMS_READ_ACCELERATION_X until a) the result is valid or b) the result is railed
high or low and there are no more offset steps. Offset and uncompensated acceleration
inside the UUMA are updated.

• Stack size: 42 bytes
• Approx. Duration: 28687 μs from one extreme to the center; 2816 μs best case.
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input parameters:

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8* u8Offset: Pointer to initial offset level to load into SMI according to Table 13.
An updated offset value is returned at the end of the function.

– UINT16* Pointer to the Universal Uncompensated Measurement Array.
Uncompensated acceleration will be updated accordingly.

• Returns:
– UINT8 u8Status: Refer to TPMS_READ_ACCELERATION_X for more information on

the format of this status byte.

3.2.10 UINT8 TPMS_COMP_ACCELERATION_X (UINT16 *u16CompAccelX,
UINT16* u16UUMA)
• CR2032 Performs an 9-bit compensated acceleration measurement. It is the user's

responsibility to ensure that updated and valid uncompensated voltage, temperature
and acceleration readings are available in the UUMA for this routine to return a
meaningful value.
– If u16CompAccel rails low, u16CompAccel will be forced to 1 and the "over/

underflow" status flag will be set.
– If u16CompAccel rails high, u16CompAccel will be forced to $1FE and the "over/

underflow" status flag will be set.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
18 / 45

– If the passed uncompensated voltage measurement is estimated to be under the
guaranteed operational region, the routine will set the "Voltage" status flag. The
accuracy of the returned value is not guaranteed.

– For repeatability data, refer to the FXTH87x06 data sheet.
• Stack size: 55 bytes
• Approx. Duration: 955 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input parameters:

– UINT16 *u16AccelX: Updated 9-bit compensated acceleration.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array

(as described in Section 2.3). Uncompensated voltage, temperature and X-axis
acceleration will be taken from this array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 15.

Table 15. Valid output conditions for TPMS_COMP_ACCELERATION_X
u8Status
Value

Measurement Value Condition

$01 $01FE Compensated acceleration reading outside of valid
range (high).

$01 $0001 Compensated acceleration reading outside of valid
range (low).

$21 $01FE Compensated pressure reading outside of
valid range (high), and uncompensated voltage
suspected to be below valid operating range for this
function.

$21 $0001 Compensated pressure reading outside of
valid range (low), and uncompensated voltage
suspected to be under below operating range for
this function.

$20 Between $0001 – $01FE Uncompensated voltage suspected to be below
valid operating range for this function; The
compensated reading is not guaranteed for
accuracy.

$00 Between $0001 – $01FE Valid compensated acceleration reading.

3.2.11 UINT8 TPMS_READ_ACCELERATION_Z (UINT16 *u16UUMA, UINT8 u8Avg,
UINT8 u8FiltSelect, UINT8 u8DynamicOffset)
• Description: Performs an uncompensated 10-bit measurement. While waiting for

the ADC to converge, this function goes into STOP4. If the ADC, for an unexpected
reason, fails to converge, this function has a built-in time-out: After five continuous
non-ADC interrupts, the function will assume a failed ADC reading, flag it accordingly,
and exit. If the LVWF (Low Voltage Warning Flag) hardware bit is set, it will flag it
accordingly as well.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
19 / 45

– If the ADC value is over or under the normal operating condition, the "acceleration
error" status flag will be set. The expected acceleration result will be forced to either
"0" or "1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 33 bytes
• Approx. Duration: 2869 μs (500-Hz filter, 1 reading), 4232 μs (250-Hz filter,

1 reading).
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated acceleration result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
be set to 1, 2, 4, 8, or 16.

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8 u8DynamicOffset: Selects the offset setting for the appropriate acceleration
reading. Default is 0.

Table 16. u8DynamicOffset valid values
Offset Index Offset when result of function is 256 counts assuming

standard trim. Span does not change.
0 –210 g

1 –180 g

2 –150 g

3 –120 g

4 –90 g

5 –60 g

6 –30 g

7 0 g (default)

8 30 g

9 60 g

10 90 g

11 120 g

12 150 g

13 180 g

14 210 g

15 240 g

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 17.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
20 / 45

Table 17. Valid output conditions for TPMS_READ_ACCELERATION_Z
u8Status
Value

Measurement Value Condition

$04 $03FF Uncompensated acceleration reading outside of
valid range (high).

$04 $0000 Uncompensated acceleration reading outside of
valid range (low).

$24 $03FF Uncompensated acceleration reading outside of
valid range (high), and LVWF set.

$24 $0000 Uncompensated acceleration reading outside of
valid range (low), and LVWF set.

$80 $0000 Uncompensated acceleration reading not acquired.

$A0 $0000 Uncompensated acceleration reading not acquired,
and LVWF set.

$00 Between $0001 – $03FE Valid uncompensated acceleration reading.

$20 Between $0001 – $03FE Valid uncompensated acceleration reading, but
LVWF set

3.2.12 UINT8 TPMS_READ_DYNAMIC_ACCEL_Z (UINT8 u8Filter, UINT8* u8Offset,
UINT16* u16UUMA)
• Description: This function automatically executes a

TPMS_READ_ACCELERATION_Z measurement with a given initial dynamic offset. If
the result is too high or too low, it will change the dynamic offset value and re-execute
TPMS_READ_ACCELERATION_Z until a) the result is valid or b) the result is railed
high or low and there are no more offset steps. Offset and uncompensated acceleration
inside the UUMA are updated.

• Stack size: 42 bytes
• Approx. Duration: 28687 μs from one extreme to the center; 2816 μs best case.
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input parameters:

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8* u8Offset: Pointer to initial offset level to load into SMI according to Table 13.
An updated offset value is returned at the end of the function.

– UINT16* Pointer to the Universal Uncompensated Measurement Array.
Uncompensated acceleration will be updated accordingly.

• Returns:
– UINT8 u8Status: Refer to TPMS_READ_ACCELERATION_Z for more information on

the format of this status byte.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
21 / 45

3.2.13 UINT8 TPMS_COMP_ACCELERATION_Z (UINT16 *u16CompAccel, UINT16*
u16UUMA)
• Description: Performs an 9-bit compensated acceleration measurement. It is the

user's responsibility to ensure that updated and valid uncompensated voltage,
temperature and acceleration readings are available in the UUMA for this routine to
return a meaningful value.
– If u16CompAccel rails low, u16CompAccel will be forced to 1 and the "over/

underflow" status flag will be set.
– If u16CompAccel rails high, u16CompAccel will be forced to $1FE and the "over/

underflow" status flag will be set.
– If the passed uncompensated voltage measurement is estimated to be under the

guaranteed operational region, the routine will set the "Voltage" status flag. The
accuracy of the returned value is not guaranteed.

– For repeatability data, refer to the FXTH87x06 data sheet.
• Stack size: 55 bytes
• Approx. Duration: 955 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input parameters:

– UINT16 *u16Accel: Updated 9-bit compensated acceleration.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage, temperature and acceleration will
be taken from this array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 18.

Table 18. Valid output conditions for TPMS_COMP_ACCELERATION_Z
u8Status
Value

Measurement Value Condition

$01 $01FE Compensated acceleration reading outside of valid
range (high).

$01 $0001 Compensated acceleration reading outside of valid
range (low).

$21 $01FE Compensated pressure reading outside of
valid range (high), and uncompensated voltage
suspected to be below valid operating range for this
function.

$21 $0001 Compensated pressure reading outside of
valid range (low), and uncompensated voltage
suspected to be under below operating range for
this function.

$20 Between $0001 – $01FE Uncompensated voltage suspected to be below
valid operating range for this function; The
compensated reading is not guaranteed for
accuracy.

$00 Between $0001 – $01FE Valid compensated acceleration reading.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
22 / 45

3.2.14 UINT8 TPMS_READ_ACCELERATION_XZ (UINT16 *u16UUMA,
UINT8 u8Avg, UINT8 u8FiltSelect, UINT8 u8DynamicOffsetX, UINT8
u8DynamicOffsetZ)
• Description: Performs an uncompensated 10-bit measurement. While waiting for

the ADC to converge, this function goes into STOP4. If the ADC, for an unexpected
reason, fails to converge, this function has a built-in time-out: After five continuous non-
ADC interrupts, the function will assume a failed ADC reading, flag it accordingly, and
exit.
– If the ADC value is over or under the normal operating condition, the "acceleration

error" status flag will be set. The expected acceleration result will be forced to either
"0" or "1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 34 bytes
• Approx. Duration: 5690 μs (500-Hz filter, 1 reading), 8440 μs (250-Hz filter, 1

reading).
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated acceleration result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
only be set to 1.

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8 u8DynamicOffsetX: Selects the offset setting for the appropriate acceleration
reading. Refer to Table 13 for more information.

– UINT8 u8DynamicOffsetZ: Selects the offset setting for the appropriate acceleration
reading. Refer to Table 16 for more information.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 19.

Table 19. Valid output conditions for TPMS_READ_ACCELERATION_XZ
u8Status
Value

Measurement Value Condition

$04 $03FF Uncompensated X and/or Z acceleration reading
outside of valid range (high).

$04 $0000 Uncompensated X and/or Z acceleration reading
outside of valid range (low).

$24 $03FF Uncompensated X and/or Z acceleration reading
outside of valid range (high), and LVWF set.

$24 $0000 Uncompensated X and/or Z acceleration reading
outside of valid range (low), and LVWF set.

$80 Undefined Uncompensated acceleration reading not acquired.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
23 / 45

u8Status
Value

Measurement Value Condition

$A0 Undefined Uncompensated acceleration reading not acquired,
and LVWF set.

$00 Between $0001 – $03FE Valid uncompensated acceleration reading.

$20 Between $0001 – $03FE Valid uncompensated acceleration reading, but
LVWF set.

3.2.15 UINT8 TPMS_READ_DYNAMIC_ACCEL_XZ (UINT8 u8Filter, UINT8*
u8OffsetX, UINT8* u8OffsetZ, UINT16* u16UUMA)
• Description: This function automatically executes a

TPMS_READ_DYNAMIC_ACCEL_X measurement, followed by a
TPMS_READ_DYNAMIC_ACCEL_Z measurement with given initial dynamic offsets.
Refer to the description of these functions for more information.

• Stack size: 54 bytes
• Approx. Duration: 50240 μs from one extreme to the center; 8200 μs best case.
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input parameters:

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8* u8OffsetX: Pointer to initial offset level to load into SMI according to Table 13.
An updated offset value is returned at the end of the function.

– UINT8* u8OffsetZ: Pointer to initial offset level to load into SMI according to Table 16.
An updated offset value is returned at the end of the function.

– UINT16* Pointer to the Universal Uncompensated Measurement Array.
Uncompensated acceleration for both axes will be updated accordingly.

• Returns:
– UINT8 u8Status: Refer to TPMS_READ_ACCELERATION_Z for more information on

the format of this status byte.

3.2.16 UINT8 TPMS_COMP_ACCELERATION_XZ (UINT16 *u16CompAccel,
UINT16* u16UUMA)
• Description: This function internally calls TPMS_COMP_ACCELERATION_X followed

by TPMS_COMP_ACCELERATION_Z. It places the compensated results in a 2-word
array. For more information, refer to the functions afore mentioned.

• Stack size: 60 bytes
• Approx. Duration: 1910 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input parameters:

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
24 / 45

– UINT16 *u16CompAccel: Updated 9-bit compensated X-axis acceleration followed by
Z-axis acceleration.

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Uncompensated voltage, temperature and acceleration will
be taken from this array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 20.

Table 20. Valid output conditions for TPMS_COMP_ACCELERATION_XZ
u8Status
Value

Measurement Value Condition

$01 $01FE Compensated acceleration reading outside of valid
range (high).

$01 $0001 Compensated acceleration reading outside of valid
range (low).

$21 $01FE Compensated pressure reading outside of
valid range (high), and uncompensated voltage
suspected to be below valid operating range for this
function.

$21 $0001 Compensated pressure reading outside of
valid range (low), and uncompensated voltage
suspected to be under below operating range for
this function.

$20 Between $0001 – $01FE Uncompensated voltage suspected to be below
valid operating range for this function; The
compensated reading is not guaranteed for
accuracy.

$00 Between $0001 – $01FE Valid compensated acceleration reading.

3.2.17 UINT8 TPMS_READ_V0 (UINT16 *u16Result, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated measurement at pin PTA0.
• Stack size: 24 bytes
• Approx. Duration: 107 μs
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: ADC, PTA0.
• Input parameters:

– UINT16 *u16Result: Updated 10-bit uncompensated measurement.
– UINT8 u8Avg: Number of measurements to average into one result. The value can

be set to 1, 2, 4, 8, or 16.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 21.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
25 / 45

Table 21. Valid output conditions for TPMS_READ_V0 and TPMS_READ_V1
u8Status
Value

Measurement Value Condition

$01 $0000 Reading not acquired.

$00 Between $0000 – $03FE Valid reading.

3.2.18 UINT8 TPMS_READ_V1 (UINT16 *u16Result, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated measurement at pin PTA1.
• Stack size: 24 bytes
• Approx. Duration: 107 μs
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: ADC, PTA1
• Input parameters:

– UINT16 *u16Result: Updated 10-bit uncompensated measurement.
– UINT8 u8Avg: Number of measurements to average into one result. The value can

be set to 1, 2, 4, 8, or 16.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 21.

3.2.19 UINT8 TPMS_LFOCAL (void)
• Description: Performs PWU clock calibration. The wake up and periodic reset time

can be calibrated more accurately by using the TPMS_LFOCAL firmware subroutine.
This subroutine turns on the RFM crystal oscillator and feeds a 500 kHz clock via
the DX signal to the TPM1 for one cycle of the LFO. The measured time is used to
calculate the correct value for the WDIV0:5-bits for a WCLK period of 1 second. The
resulting value for use in the WDIV0:5-bits is returned in the accumulator. The user
can decide whether to load the value to the WDIV0:5-bits or store for future reference.
The TPMS_LFOCAL subroutine cannot be used while the RFM is transmitting or
the TPM1 is being used for another task. This routine will also consume more power
due to the crystal oscillator running. This function accesses and writes data to the
SIMOPT2 register. Since some of the bits in this register are write-once-only, it should
be configured prior to calling this routine.

• Stack size: 9 bytes
• Approx. Duration: 1218 μs
• Power management: This function executes entirely in RUN mode. It requires the

MCU to be configured for 4-MHz bus clock, and the RFM to be enabled but not
transmitting prior to making the call.

• Interrupt management: This function does not await any interrupts. It WILL be
affected by interrupts.

• Resources: TPM, SIMOPT2, RFM
• Input parameters:

– None
• Returns:

– UINT8 u8WDIV: WDIV compensated value.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
26 / 45

Warning: This routine writes to write-once register SIMOPT2. Any configuration involving
this register must be performed before calling this routine. Prior to calling this routine, the
RFM must be enabled.

3.2.20 UINT8 TPMS_MFOCAL (void)
• Description: Performs MFO cross-check verification. This function will measure the

bus clock relative to Dx, but first executes a test to verify the presence of the external
XTAL. When error is zero, it returns “128.” Any deviation from this value should be
considered an error. This result can then be used to estimate the error in the RFBT
setting. The TPMS_MFOCAL subroutine cannot be used while the RFM is transmitting
or the TPM1 is being used for another task. This function accesses and writes data
to the SIMOPT2 register. Since some of the bits in this register are write-once-only, it
should be configured prior to calling this routine.

• Stack size: 36 bytes
• Approx. Duration: 2352 μs
• Power management: This function executes entirely in RUN mode. It requires the

MCU to be configured for 4-MHz bus clock, and the RFM to be enabled but not
transmitting prior to making the call.

• Interrupt management: This function does not await any interrupts. It WILL be
affected by interrupts.

• Resources: TPM, SIMOPT2, RFM
• Input parameters:

– None
• Returns:

– UINT8 u8Error: Percentage of error away from target frequency (4 MHz).
Note: This function is not correctly implemented so returns incorrect data.

Warning: This routine writes to write-once register SIMOPT2. Any configuration involving
this register must be performed before calling this routine. This function is not correctly
implemented meaning that it exists and can be executed by the user, but it will not return
the expected data described above. The data returned will be incorrect so must not be
used by the application. This implies the user should avoid using this function.

3.2.21 void TPMS_RF_ENABLE (UINT8 u8Switch)
• Description: This function enables or disables the RF module in the FXTH87xx22 and

transfers adequate PLL trim data to the module. It should be called prior to any other
RF operation.

• Stack size: 4 bytes
• Approx. Duration: 378 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: SIMOPT1, RFM
• Input parameters:

– UINT8 u8Switch: Enable (non-zero) or disable (zero) RFM.
• Returns:

– void.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
27 / 45

Warning: This routine writes to write-once register SIMOPT2. Any configuration involving
this register must be performed before calling this routine.

3.2.22 void TPMS_RF_RESET (void)
• Description: This function sends a master reset to the RFM and reloads PLL trim

values into the module. It requires the RFM to have been enabled previously.
• Stack size: 3 bytes
• Approx. Duration: 228 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– None
• Returns:

– void

3.2.23 void TPMS_RF_READ_DATA (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer)
• Description: This function reads several consecutive bytes from the dedicated RFM

buffer registers and copies them to a given address in RAM. It assumes that BUFF0 is
location "0". The data is transferred from the LSB bit of the RFM data registers to the
LSB of the target memory address (standard data bit order). This function manages the
RFM's buffer paged memory.
– In case the required buffer address is out of bounds, the routine will return "0" for that

location.
• Stack size: 11 bytes
• Approx. Duration: 207 μs (for 8 bytes, switching pages included).
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8Size: Number of bytes to read.
– UINT8 *u8RamBuffer: Target memory location.
– UINT8 u8RFMBuffer: Buffer register (0 to 31) to read.

• Returns:
– void

3.2.24 void TPMS_RF_READ_DATA_REVERSE (UINT8 u8Size, UINT8
*u8RAMBuffer, UINT8 u8RFMBuffer)
• Description: This function reads several consecutive bytes from the dedicated RFM

buffer registers and copies them to a given address in RAM. It assumes that BUFF0
is location "0". The data is transferred from the LSB bit of each byte of the RFM data
registers to the MSB of each of the bytes of the target memory address (reversed data
bit order). This function manages the RFM's buffer paged memory.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
28 / 45

– In case the required buffer address is out of bounds, the routine will return "0" for that
location.

• Stack size: 12 bytes
• Approx. Duration: 257 μs (for 8 bytes, switching pages included).
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8Size: Number of bytes to read.
– UINT8 *u8RamBuffer: Target memory location.
– UINT8 u8RFMBuffer: Buffer register (0 to 31) to read.

• Returns:
– void

3.2.25 void TPMS_RF_WRITE_DATA (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer)
• Description: This function copies several consecutive bytes from RAM into the

dedicated RFM Output Buffer. It assumes that BUFF0 is location "0". The data is
transferred from the LSB bit of RAM to the LSB of the RFM data register (standard data
bit order). This function manages the RFM's buffer paged-memory.
– In case the destination buffer address is out of bounds, the register value will not be

written.
• Stack size: 10 bytes
• Approx. Duration: 195 μs (for 8 bytes, switching pages included).
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8Size: Number of bytes to write.
– UINT8 *u8RamBuffer: Source memory location.
– UINT8 u8RFMBuffer: Starting buffer register (0 to 31) to write.

• Returns:
– void

3.2.26 void TPMS_RF_WRITE_DATA_REVERSE (UINT8 u8Size, UINT8
*u8RAMBuffer, UINT8 u8RFMBuffer)
• Description: This function copies several consecutive bytes from RAM into the

dedicated RFM Output Buffer. It assumes that BUFF0 is location "0". The data is
transferred from the LSB bit of each byte in RAM to the MSB of each byte in the RFM
data register (reversed data bit order). This function manages the RFM's buffer paged-
memory.
– In case the destination buffer address is out of bounds, the register value will not be

written.
• Stack size: 11 bytes
• Approx. Duration: 256 μs (for 8 bytes, switching pages included).

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
29 / 45

• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8Size: Number of bytes to write.
– UINT8 *u8RamBuffer: Source memory location.
– UINT8 8uRFMBuffer: Starting buffer register (0 to 31) to write.

• Returns:
– void

3.2.27 void TPMS_RF_CONFIG_DATA (UINT16 *u16RFParam)
• Description: This function is included for backward compatibility with the MPXY8300.

This function configures the RFM for transmission. It does not configure inter-frame
wait times, which must be configured manually.

• Stack size: 4 bytes
• Approx. Duration: 32 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT16* u16RFParam Format as described in Table 22.

Table 22. u16RFParam Array format
Index Description
0 Refer to Table 23 for description.

1 PLLA value.

2 PLLB value.

Table 23. Description of Element 0 in the u16RFParam Array
Bits Description
15:8 Prescaler value. Described in data sheet as RFCR0.

7 End Of Message- If '1', EOM is set, if '0', it's not set.

6 Polarity Bit - If '1', polarity is inverted, If '0', it is non-inverted.

5:4 Not used.

2:3 Encoding value

1 Frequency selection - If '1', RFM is configured for 434 MHz, if '0', it is
configured for 315 MHz.

0 Modulation - If '1', RFM is configured for FSK, if '0' it is configured for OOK.

• Returns:
– void

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
30 / 45

3.2.28 void TPMS_RF_SET_TX (UINT8 u8BufferSize)
• Description: This function allows the RFM to transmit data previously loaded in the

buffer. It should be called after the RF module has been enabled and configured.
• Stack size: 3 bytes
• Approx. Duration: 12 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8BufferSize: Number of bits in the buffer -1 (i.e., to transmit one bit,
u8BufferSize should equal 0).

• Returns:
– void

3.2.29 void TPMS_RF_DYNAMIC_POWER (UINT8 u8CompT, UINT8 u8CompV,
UINT8* pu8PowerManagement)
• Description: Depending on the passed parameters, this function can:

– Force the RF power setting (RFCFR2_PWR) to a passed value (when BIT5 of
u8PowerManagement is clear)

– When BIT5 of u8PowerManagement is set, find the best RF power setting
(RFCFR2_PWR) dynamically based on voltage, temperature, and current carrier
frequency in order to target 3 dBm as actual output power. This value of 3 dBm can
be increased or decreased in given temperature ranges using the offsets (0.5 dBm/
count) in the pu8PowerManagement array.

– Similar to the case above, the user can specify a target power region with an offset.
• Stack size: 11 bytes
• Approx. Duration: 60 μs when calculating dynamic power; 19.2 when power setting is

passed.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input parameters:

– UINT8 u8CompT: Compensated temperature reading.
– UINT8 u8CompV: Compensated voltage reading.
– UINT8* pu8PowerManagement: This is a pointer to an array of eight elements as

described in Table 24:

Table 24. *pu8PowerManagement format
Index Value Description
pu8PowerManagement[0] Dynamic Compensation switch as described in Table 25.

pu8PowerManagement[1] Offset step for temperatures ≥ 92 °C

pu8PowerManagement[2] Offset step for 60 °C ≤ temp < 92 °C

pu8PowerManagement[3] Offset step for 43 °C ≤ temp < 60 °C

pu8PowerManagement[4] Offset step for 25 °C ≤ temp < 43 °C

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
31 / 45

Index Value Description
pu8PowerManagement[5] Offset step for 1 °C ≤ temp < 25 °C

pu8PowerManagement[6] Offset step for –20 °C ≤ temp < 1 °C

pu8PowerManagement[7] Offset step for –40 °C ≤ temp < –20 °C

Table 25. pu8PowerManagement[0] format
BIT Description
MSB Not used.

BIT6 Not used.

BIT5 Dynamic compensation enable.
If set, the function will decide what the optimal power setting is based on voltage
and temperature; In this case, values stored in the array will be added to the
found target.
If clear, BIT4:0 will be used to set the power level directly.

BIT4:0 When BIT5 is clear, the value passed here will be used to set the RF power step
directly.

• Returns:
– void

Warning: The RF Module must be turned on prior to calling this routine.

3.2.30 void TPMS_MSG_INIT (void)
• Description: This function is to be called before using any MSG routine. It initializes

PTA1 and PTA0 to their correct initial state for a simulated SPI.
• Stack size: 2 bytes
• Approx. Duration: 4 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: Pins PTA1 and PTA0.
• Input parameters:

– None
• Returns:

– void

3.2.31 UINT8 TPMS_MSG_READ (void)
• Description: This function is in charge to read any incoming message at a network

level via an emulated serial interface on PTA1 and PTA0. As the master, the
FXTH87xx22 manages the clock on PTA1. On falling edge of the clock, the module
reads a new data bit on PTA0 (programmed as input), MSB first.

• Stack size: 2 bytes
• Approx. Duration: 80 μs
• Power management: This function executes entirely in RUN mode.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
32 / 45

• Interrupt management: This function does not await any interrupts. It will not be
affected by interrupts.

• Resources: Pins PTA1 and PTA0.
• Input parameters:

– None
• Returns:

– UINT8 u8ReadByte: Incoming byte from the emulated serial interface.

3.2.32 UINT8 TPMS_MSG_WRITE (UINT8 u8SendByte)
• Description: This function is in charge to write a message at a network level via

an emulated serial interface on PTA1 and PTA0. As the master, the FXTH87xx22
manages the clock on PTA1. On rising edge of the clock, the module puts down a new
data bit on PTA0 (programmed as output), MSB first.

• Stack size: 2 bytes
• Approx. Duration: 80 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: Pins PTA1 and PTA0.
• Input parameters:

– UINT8 u8SendByte: Byte to be outputted through the emulated serial interface.
• Returns:

– UINT8 u8ReadByte: Incoming byte from the emulated serial interface.

3.2.33 UINT8 TPMS_CHECKSUM_XOR (UINT8 *u8Buffer, UINT8 u8Size, UINT8
u8Checksum)
• Description: Calculates a checksum for the given buffer based on XOR operations.
• Stack size: 8 bytes
• Approx. Duration: 113 μs for 8 bytes of data.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT8 *u8Buffer: Buffer where data is located.
– UINT8 u8Size: Size of buffer (in bytes).
– UINT8 u8Checksum: Previous checksum. This argument is useful when the function

is used recursively. It must equal "0" if there is no previous data.
• Returns:

– UINT8 u8NewChecksum: New calculated checksum.

3.2.34 UINT8 TPMS_CRC8 (UINT8 *u8Buffer, UINT16 u16SizeInBytes, UINT8
u8Remainder)
• Description: Calculates a CRC8 on a portion of the designated area using polynomial

x8 + x5 + x3 + x2 + x + 1.
• Stack size: 9 bytes

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
33 / 45

• Approx. Duration: 240 μs for 8 bytes of data.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT8 *u8Buffer: Buffer where data is located.
– UINT16 u16SizeInBytes: Size of the designated buffer (in bytes).
– UINT8 u8Remainder: Initial remainder. This argument is useful when the function is

used recursively. It must equal "0" if there is no previous data.
• Returns:

– UINT8 u8NewCRC: New calculated CRC8.

3.2.35 UINT16 TPMS_CRC16 (UINT8 *u8Buffer, UINT16 u16MByteSize, UINT16
u16Remainder)
• Description: Calculates a CRC16 on a portion of the designated memory area by

using a look-up table. Polynomial used is $1021 (standard for CRC16-CCITT).
• Stack size: 12 bytes
• Approx. Duration: 236 μs for 8 bytes.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT8 *u8Buffer: Buffer where data is located.
– UINT16 u16MByteSize: Size of the designated buffer (in bytes).
– UINT16 u16Remainder: Initial remainder.

• Returns:
– UINT16 u16NewCRC: New calculated CRC16.

Note: This function is not correctly implemented so returns incorrect data.

Warning: This function is not correctly implemented meaning that it exists and can be
executed by the user, but it will not return the expected data described above. The data
returned will be incorrect so must not be used by the application. This implies the user
should avoid using this function.

3.2.36 UINT16 TPMS_SQUARE_ROOT (UINT16 u16Process)
• Description: Calculates a two-digit remainder of (square root * 10) using a fast

algorithm.
• Stack size: 49 bytes
• Approx. Duration: 365 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT16 u16Process: The number from which to get the square root from.
• Returns:

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
34 / 45

– UINT16 Root of the number * 10.

3.2.37 void TPMS_READ_ID (UINT8 *u8Code, UINT8 u8Offset)
• Description: Copies the device's UniqueID and firmware version stored in firmware

flash to RAM.
• Stack size: 10 bytes
• Approx. Duration: 119 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT8 *u8Code: RAM location where data will be copied. Table 26 describes the
format of the 6 bytes returned.

Table 26. u8Code format
Index Description
0 Firmware version.

1 Derivative descriptor.

2:5 32-bit UniqueID.

• UINT8 u8Offset: Index of the first value to return. The use of this argument allows the
user to skip firmware version, derivative description, or upper bytes of the UniqueID.

• Returns:
– void

3.2.38 void TPMS_LF_ENABLE (UINT8 u8Switch)
• Description: The function first configures the LFR registers as recommended by NXP

and described in Section 2.6 of this document. Then the LFR module is enabled or
disabled.

• Stack size: 5 bytes
• Approx. Duration: 32 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: LFR
• Input parameters:

– UINT8 u8Switch: Enable (non-zero) or disable (zero) LFR.
• Returns:

– void

3.2.39 UINT8 TPMS_LF_READ_DATA (UINT8 *u8Buffer, UINT8 u8Count)
• Description: Once the user has configured and enabled the LFR, it is customary to go

into a low-power state mode and wait for a datagram. After the first byte of an incoming
datagram is successfully received, this function should be called immediately; It will
receive the complete datagram and place it in RAM. Be careful to call the function

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
35 / 45

upon reception of the first data byte (LFDRF flag) and not upon detection of the ID
(LFIDF flag) in case the LFIDIE is enabled. This function assumes that the LFR module
is configured accordingly for a Manchester reception; that the module’s interrupts
are enabled; and that the first byte has already been received and is waiting in the
LFR received buffer. While waiting for the next byte, this function goes into STOP4. If
the byte, for an unexpected reason, is not received, this function has a built-in time-
out: After five continuous non-LFR interrupts, the function will assume a failed LFR
reception and exit. In order to leave the routine as soon as possible after reception
of all the data bytes it is recommended to enable the LF error interrupt (LFERIE). In
summary, the two necessary interrupts to be enabled are LFDRIE and LFERIE.

• Stack size: 7 bytes
• Approx. Duration: Data dependant; ~2 msec per byte.
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the LFR interrupt to wake up from STOP

mode. It does not await any other interrupts and should not be affected by them.
• Resources: LFR
• Input parameters:

– UINT8 *u8Buffer: RAM Buffer where data will be placed.
– UINT8 u8Count: Number of bytes expected.

• Returns:
– UINT8 u8BytesReceived: Actual number of bytes received.

Warning: This function requires ~24 μs from the moment it is called to the moment the
first byte is copied into the RAM buffer. The user must consider this time when designing
their firmware.

3.2.40 UINT8 TPMS_WIRE_AND_ADC_CHECK (UINT8 u8TestMask)
• Description: This function checks if there is any bonding wire failure between the

embedded core and the P-cell; or between the core and the g-cell. It also performs
an optional ADC test. This latter test consists on taking two reference measurements
(ground and Vdd) using internal channels and comparing them with the expected
results. When configuring for a P-cell or g-cell wire check, Interrupts must be enabled
before calling this routine. In case of no issues found, "0" will be returned, else it sets
status flags as follows:
– On P-cell error, sets "BONDERR" and "pressure error" flags.
– On g-cell error, sets the "BONDERR" and "acceleration error" flags.
– On ADC error, sets the "ADCERR" flag.

• Stack size: 44 bytes
• Approx. Duration: 29600 μs for all tests; 102 μs for ADC only; about 9800 μs for each

sensor test.
• Power management: This function requires the core to be configured for STOP4

mode and running at full bus speed.
• Interrupt management: This function utilizes the ADC interrupt to wake up from STOP

mode.
• Resources: ADC, SMI, internal bond wires.
• Input parameters:

– UINT8 u8TestMask: This variable determines what checks are performed as
described by Table 27.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
36 / 45

Table 27. u8TestMask format
u8TestMask Bit Description
BIT0:1 Reserved.

BIT2 If set, P-cell bond-wire check performed.

BIT3 If set, X-axis bond-wire check performed.

BIT4 If set, Z-axis bond-wire check performed.

BIT5:6 Reserved.

BIT7 If set, ADC check performed.

• Returns:
– UINT8 u8Status: Status flags as described in Table 28.

Table 28. u8Status valid values for TPMS_WIRE_AND_ADC_CHECK
u8TestMask Bit Description
BIT0:1 Always clear.

BIT2 If set, P-cell bond-wire error detected.

BIT3 Always clear.

BIT4 If set, g-cell bond-wire error detected.

BIT5:6 Always clear.

BIT7 If set, ADC error detected.

Warning: This routine is known to be inexact. Avoid its use if possible.

3.2.41 void TPMS_FLASH_WRITE (UINT16 u16Address, UINT8* u8Buffer, UINT8
u8Size)
• Description: This function writes consecutive bytes from a given address in memory to

a specified location in FLASH.
• Stack size: 15 bytes
• Approx. Duration: 1336 μs for 8 bytes of data.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: Global RAM locations $0090 – $00CA.
• Input parameters:

– UINT16 u16Address: Flash starting address.
– UINT8 *u8Buffer: Source memory address.
– UINT8 u8Size: Number of data bytes to be written.

• Returns:
– void

Warning: This routine will overwrite the contents of RAM locations $0090 – $00CA.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
37 / 45

3.2.42 UINT16 TPMS_FLASH_CHECK (void)
• Description: This function calculates the CRC16 checksum for the NXP firmware area

(addresses $E000 – FFAD) using the function TPMS_CRC16. It compares it with a pre-
calculated stored value and reports if these two values match or not.

• Stack size: 16 bytes
• Approx. Duration: 226800 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– None
• Returns:

– UINT16 u16Status: "0" in case the calculated checksum and the stored one are the
same, or the calculated checksum in case they are different.
Note: This function is not correctly implemented so does not assess the state of the
FLASH.

Warning: This function is not correctly implemented meaning that it exists and can be
executed by the user, but it will not return the expected data described above. The data
returned will be incorrect so must not be used by the application. This implies the user
should avoid using this function.

3.2.43 UINT8 TPMS_FLASH_ERASE (UINT16 u16Address)
• Description: This function erases 1 page (512 bytes) of flash at a time.
• Stack size: 11 bytes
• Approx. Duration: 23810 μs.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It may be affected

by interrupts.
• Resources: Global RAM locations $0090 – $00CA
• Input parameters:

– UINT16 u16Address: any given address. The whole page where this address resides
will be erased (i.e. if u16Address = $D234, the contents of addresses $D200 –
$D3FF will be erased).

• Returns:
– Zero if the page was erased successfully; else, one.

Note: If u16Address is within NXP firmware section, the erase command will not be
performed but the return value will be zero.

Warning: This routine will overwrite the contents of RAM locations $0090– $00CA.

3.2.44 UINT8 TPMS_FLASH_PROTECTION (UINT16 u16Key)
• Description: This function enables flash protection for the complete user block. After

its execution, both TPMS_FLASH_WRITE and TPMS_FLASH_ERASE will become
disabled permanently. It will also block any customer boot loader from successfully
writing to any location. Re-programming of the device can only be achieved through
BDM after execution of this routine.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
38 / 45

• Stack size: 11 bytes
• Approx. Duration: 736 μs if protecting; 20.4 μs for a failed attempt.
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: Global RAM locations $0090 – $00CA.
• Input parameters:

– UINT16 u16Key: Due to the irreversible status after the execution of this routine, this
argument is used as a fail-safe to guarantee desired execution of the function. Only
when u16Key is equal to the least-significant word of the UniqueID will this function
execute successfully.

• Returns:
– UINT8 u8Status: according to Table 29.

Table 29. Possible status values for TPMS_FLASH_PROTECTION
Return
Value

Description

$0 u16Key matches lower 16-bits of UniqueID; protection was disabled and now is
enabled.

$1 u16Key does not match lower 16-bits of UniqueID; protection was disabled and
continues to be so.

$2 u16Key matches lower 16-bits of UniqueID; protection was already enabled.

$3 u16Key does not match lower 16-bits of UniqueID: protection was already enabled.

$4 u16Key matches lower 16-bits of UniqueID; protection was disabled and continues
to be so (failed writing
protection).

$5 – $FF Reserved.

Warning: This routine can only be executed once. After successful execution of this
routine, TPMS_FLASH_WRITE and TPMS_FLASH_ERASE will be permanently
disabled.

3.2.45 void TPMS_MULT_SIGN_INT16 (INT16 i16Mult1, INT16 i16Mult2, INT32*
pi32Result)
• Description: This function will multiply two signed 16-bit numbers together.
• Stack size: 17 bytes
• Approx. Duration: 60 μs
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It should not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– INT16 i16Mult1: First multiplier.
– INT16 i16Mult2: Second multiplier.
– INT32* pi32Result: Pointer to a 32-bit variable where the result will be stored.

• Returns:
– void.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
39 / 45

3.2.46 UINT16 TPMS_WAVG(UINT8 u8PNew, UINT16 u16POld, UINT8 u8Avg)
• Description: This subroutine calculates a new weighed average value for a given new

and old measurement readings by using the following equation:

• Stack size: 12 bytes
• Approx. Duration: 38 μs (average of 2), 43 μs (average of 4), 48 μs (average of 8), 53

μs (average of 16), 56 μs (average of 32).
• Power management: This function executes entirely in RUN mode.
• Interrupt management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input parameters:

– UINT8 u8PNew: new value to include in average.
– UINT16 u16Pold: Old average.
– UINT8 u8Avg: Weight of the average. This value can be 2, 4, 8, 16, 32; any other

value will return an incorrect response.
• Returns:

– UINT16 u8NewAverage: resulting weighed average of both old average and the new
value (refer to Example 1).

3.2.47 void TPMS_RDE_ADJUST_PRESSURE (UINT16* pu16UUMA, T_RDE*
ptRDEValues)
• Description: This routine's functionality has been removed, but its prototype is still

callable for backward compatibility. It always returns CLEAR, and doesn't affect any
passed argument.

• Stack size: 7 bytes
• Approx. Duration: 85 μs
• Power management: This function does not await any interrupts and should not be

affected by interrupts.
• Interrupt management: This function does not await any interrupts and should not be

affected by interrupts.
• Resources: Core
• Input parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.5 "Rapid Decompression Event Array (T_RDE) Format"). No
values are affected.

– T_RDE* ptRDEValues: For more information on the RDE structure, refer to
Section 2.5 "Rapid Decompression Event Array (T_RDE) Format".

• Returns:
– UINT8 u8Status: Always CLEAR.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
40 / 45

4 Revision history
Revision history
Revision
number

Date Description

2.3 20180501 • Added new paragraph in Section 2.1.1 "TPMS_INTERRUPT_FLAG" before first
paragraph.

• Revised u*Status Value column in Table 14 from "$08" to "$04" and "$28" to $24".
• Revised u*Status Value column in Table 16 from "$08" to "$04" and "$28" to $24".
• Revised u*Status Value column in Table 19 from "$08" to "$04" and "$28" to $24"

and revised Condition column from "Uncompensated X acceleration reading..." to
"Uncompensated X and/or Y acceleration reading...". Removed rows with u8Status
values of $10, $30, $18, and $38.

• Revised "Table xx" to "Table 21" in Section 3.2.18.
• Removed "This routine is known to be inexact. Avoid its use if possible." from the

warning in Section 3.2.20.
• Added Note to description item "Returns" in Section 3.2.20 and additonal content to

"Warning".
• Added Note to description item "Returns" in Section 3.2.35 and additonal content to

"Warning".
• Revised content for "Description" in Section 3.2.38.
• Added Note to description item "Returns" in Section 3.2.42 and additonal content to

"Warning".
• Added Note to description item "Returns" in Section 3.2.43.

2.2 20170308 • The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors. Legal texts have been adapted to the new
company name where appropriate.

• Added new content after the third sentence in the first paragraph starting with "If an
LFR interrupt occurs ... has consumed too much time." in Section 2.1.1.

• Added new content "The watchdog is automatically restarted when the program
goes back in RUN mode." at the end of the first paragraph in Section 2.1.1.

• Added new content to the power management item starting with "It requires the
MCU ... making the call" in Section 3.2.19.

• Added "Prior to calling this routine, the RFM must be enabled." to the warning at
the end of Section 3.2.19.

• Revised the content of the description item in Section 3.2.20.
• Added new content to the power management item starting with "It requires the

MCU ... making the call" in Section 3.2.20.
• Added new item "When BIT5 of u8PowerManagement is set, find the best RF

power setting (RFCFR2_PWR) dynamically based on voltage, temperature, and
current carrier frequency in order to target 3 dBm as actual output power. This
value of 3 dBm can be increased or decreased in given temperature ranges using
the offsets (0.5 dBm/count) in the pu8PowerManagement array." in Section 3.2.29.

• Added three rows and revised all descriptions in Table 24 in Section 3.2.29.
• Revised the content of the description item in Section 3.2.39.

2.1 2014-10 Updated values for Page-1 register LFCTRLD for Bits 4 and 3 from 0 to 1 in Table 4

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
41 / 45

Revision
number

Date Description

2.0 2014-10 • Removed "Xtrinsic" from document title in Section 1.
• Removed "Some functionality may not be present in all derivatives." from the first

paragraph of Section 1.
• Updated UINT8 entry description changing "Plock" to "Clock" in Paragraph.
• Added section Section 2.6.
• Updated Approx. Duration bullet from "216" to "900" in Section 3.2.7.
• Updated Approx. Duration bullet from "216" to "955" in Section 3.2.10 and

Section 3.2.13.
• Changed table heading from "TPMS_READ_ACCELERATION_X" to

"TPMS_READ_ACCELERATION_Z" in Table 17.
• Revised the content of each bullet in Section 3.2.47.

1.01 2014-07 Initial release.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
42 / 45

5 Legal information

5.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not
give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable
for the specified use without further testing or modification. Customers
are responsible for the design and operation of their applications and

products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

Suitability for use in automotive applications — This NXP
Semiconductors product has been qualified for use in automotive
applications. Unless otherwise agreed in writing, the product is not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer's own
risk.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

5.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
43 / 45

Tables
Tab. 1. TPMS_INTERRUPT_FLAG format and

trigger conditions ...2
Tab. 2. Error Status Fields .. 3
Tab. 3. Universal Uncompensated Measurement

Array ..5
Tab. 4. Customer-configurable TMPS and LF

Register with SENS = 1 7
Tab. 5. Customer-configurable TMPS and LF

Register with SENS = 2 7
Tab. 6. FXTH87xx22's Firmware Function jump

table ...8
Tab. 7. Valid output conditions for

TPMS_READ_VOLTAGE11
Tab. 8. Valid output conditions for

TPMS_COMP_VOLTAGE11
Tab. 9. Valid output conditions for

TPMS_READ_TEMPERATURE12
Tab. 10. Valid output conditions for

TPMS_COMP_TEMPERATURE13
Tab. 11. Valid output conditions for

TPMS_READ_PRESSURE14
Tab. 12. Valid output conditions for

TPMS_COMP_PRESSURE 15
Tab. 13. u8DynamicOffset valid values 16
Tab. 14. Valid output conditions for

TPMS_READ_ACCELERATION_X 16

Tab. 15. Valid output conditions for
TPMS_COMP_ACCELERATION_X18

Tab. 16. u8DynamicOffset valid values 19
Tab. 17. Valid output conditions for

TPMS_READ_ACCELERATION_Z20
Tab. 18. Valid output conditions for

TPMS_COMP_ACCELERATION_Z21
Tab. 19. Valid output conditions for

TPMS_READ_ACCELERATION_XZ 22
Tab. 20. Valid output conditions for

TPMS_COMP_ACCELERATION_XZ 24
Tab. 21. Valid output conditions for TPMS_READ_V0

and TPMS_READ_V1 25
Tab. 22. u16RFParam Array format 29
Tab. 23. Description of Element 0 in the u16RFParam

Array ..29
Tab. 24. *pu8PowerManagement format30
Tab. 25. pu8PowerManagement[0] format 31
Tab. 26. u8Code format .. 34
Tab. 27. u8TestMask format ..36
Tab. 28. u8Status valid values for

TPMS_WIRE_AND_ADC_CHECK36
Tab. 29. Possible status values for

TPMS_FLASH_PROTECTION38

Figures
Fig. 1. Measurement Signal Range Definitions 3 Fig. 2. Description of the physical layer on the

FXTH87xx22 Simulated SPI interface6

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

FXTH87xx22FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

User guide Rev. 2.3 — 1 May 2018
44 / 45

Contents
1 Introduction ... 1
2 Globals and formats ... 1
2.1 Global variables ...1
2.1.1 TPMS_INTERRUPT_FLAG 1
2.2 Measurement error format2
2.2.1 Definition of Signal Ranges 2
2.2.2 Error Status Format ...3
2.3 Universal Uncompensated Measurement

Array (UUMA) format ...4
2.4 Simulated SPI interface Signal Format5
2.5 Rapid Decompression Event Array (T_RDE)

Format ..6
2.6 LFR registers initialized by firmware6
3 Firmware Functions .. 8
3.1 Firmware jump table ..8
3.2 Function description ...9
3.2.1 void TPMS_RESET (void) 10
3.2.2 UINT8 TPMS_READ_VOLTAGE (UINT16

*u16UUMA) ..10
3.2.3 UINT8 TPMS_COMP_VOLTAGE (UINT8

*u8CompVoltage, *UINT16 u16UUMA) 11
3.2.4 UINT8 TPMS_READ_TEMPERATURE

(UINT16 *u16UUMA) 12
3.2.5 UINT8 TPMS_COMP_TEMPERATURE

(UINT8 *u8Temp, UINT16 *u16UUMA) 13
3.2.6 UINT8 TPMS_READ_PRESSURE (UINT16

*u16UUMA, UINT8 u8Avg)13
3.2.7 UINT8 TPMS_COMP_PRESSURE (UINT16

*u16CompPressure, UINT16 *u16UUMA) 14
3.2.8 UINT8 TPMS_READ_ACCELERATION_X

(UINT16 *u16UUMA, UINT8 u8Avg, UINT8
u8FiltSelect, UINT8 u8DynamicOffset) 15

3.2.9 UINT8
TPMS_READ_DYNAMIC_ACCEL_X
(UINT8 u8Filter, UINT8* u8Offset, UINT16*
u16UUMA) ... 17

3.2.10 UINT8 TPMS_COMP_ACCELERATION_X
(UINT16 *u16CompAccelX, UINT16*
u16UUMA) ... 17

3.2.11 UINT8 TPMS_READ_ACCELERATION_Z
(UINT16 *u16UUMA, UINT8 u8Avg, UINT8
u8FiltSelect, UINT8 u8DynamicOffset) 18

3.2.12 UINT8 TPMS_READ_DYNAMIC_ACCEL_Z
(UINT8 u8Filter, UINT8* u8Offset, UINT16*
u16UUMA) ... 20

3.2.13 UINT8 TPMS_COMP_ACCELERATION_Z
(UINT16 *u16CompAccel, UINT16*
u16UUMA) ... 21

3.2.14 UINT8 TPMS_READ_ACCELERATION_XZ
(UINT16 *u16UUMA, UINT8 u8Avg, UINT8
u8FiltSelect, UINT8 u8DynamicOffsetX,
UINT8 u8DynamicOffsetZ) 22

3.2.15 UINT8
TPMS_READ_DYNAMIC_ACCEL_XZ
(UINT8 u8Filter, UINT8* u8OffsetX, UINT8*
u8OffsetZ, UINT16* u16UUMA) 23

3.2.16 UINT8
TPMS_COMP_ACCELERATION_XZ
(UINT16 *u16CompAccel, UINT16*
u16UUMA) ... 23

3.2.17 UINT8 TPMS_READ_V0 (UINT16
*u16Result, UINT8 u8Avg) 24

3.2.18 UINT8 TPMS_READ_V1 (UINT16
*u16Result, UINT8 u8Avg) 25

3.2.19 UINT8 TPMS_LFOCAL (void) 25
3.2.20 UINT8 TPMS_MFOCAL (void) 26
3.2.21 void TPMS_RF_ENABLE (UINT8 u8Switch) ... 26
3.2.22 void TPMS_RF_RESET (void) 27
3.2.23 void TPMS_RF_READ_DATA (UINT8

u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 27

3.2.24 void TPMS_RF_READ_DATA_REVERSE
(UINT8 u8Size, UINT8 *u8RAMBuffer,
UINT8 u8RFMBuffer)27

3.2.25 void TPMS_RF_WRITE_DATA (UINT8
u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 28

3.2.26 void TPMS_RF_WRITE_DATA_REVERSE
(UINT8 u8Size, UINT8 *u8RAMBuffer,
UINT8 u8RFMBuffer)28

3.2.27 void TPMS_RF_CONFIG_DATA (UINT16
*u16RFParam) ... 29

3.2.28 void TPMS_RF_SET_TX (UINT8
u8BufferSize) ... 30

3.2.29 void TPMS_RF_DYNAMIC_POWER
(UINT8 u8CompT, UINT8 u8CompV,
UINT8* pu8PowerManagement)30

3.2.30 void TPMS_MSG_INIT (void) 31
3.2.31 UINT8 TPMS_MSG_READ (void) 31
3.2.32 UINT8 TPMS_MSG_WRITE (UINT8

u8SendByte) .. 32
3.2.33 UINT8 TPMS_CHECKSUM_XOR (UINT8

*u8Buffer, UINT8 u8Size, UINT8
u8Checksum) ...32

3.2.34 UINT8 TPMS_CRC8 (UINT8 *u8Buffer,
UINT16 u16SizeInBytes, UINT8
u8Remainder) .. 32

3.2.35 UINT16 TPMS_CRC16 (UINT8 *u8Buffer,
UINT16 u16MByteSize, UINT16
u16Remainder) .. 33

3.2.36 UINT16 TPMS_SQUARE_ROOT (UINT16
u16Process) ...33

3.2.37 void TPMS_READ_ID (UINT8 *u8Code,
UINT8 u8Offset) .. 34

3.2.38 void TPMS_LF_ENABLE (UINT8 u8Switch)34
3.2.39 UINT8 TPMS_LF_READ_DATA (UINT8

*u8Buffer, UINT8 u8Count)34
3.2.40 UINT8 TPMS_WIRE_AND_ADC_CHECK

(UINT8 u8TestMask) 35
3.2.41 void TPMS_FLASH_WRITE (UINT16

u16Address, UINT8* u8Buffer, UINT8
u8Size) ...36

NXP Semiconductors FXTH87xx22FWUG
FXTH87xx22 Embedded Firmware User Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2018. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 May 2018

3.2.42 UINT16 TPMS_FLASH_CHECK (void) 37
3.2.43 UINT8 TPMS_FLASH_ERASE (UINT16

u16Address) ...37
3.2.44 UINT8 TPMS_FLASH_PROTECTION

(UINT16 u16Key) ...37
3.2.45 void TPMS_MULT_SIGN_INT16 (INT16

i16Mult1, INT16 i16Mult2, INT32*
pi32Result) ...38

3.2.46 UINT16 TPMS_WAVG(UINT8 u8PNew,
UINT16 u16POld, UINT8 u8Avg)39

3.2.47 void TPMS_RDE_ADJUST_PRESSURE
(UINT16* pu16UUMA, T_RDE*
ptRDEValues) .. 39

4 Revision history .. 40
5 Legal information ..42

	1 Introduction
	2 Globals and formats
	2.1 Global variables
	2.1.1 TPMS_INTERRUPT_FLAG

	2.2 Measurement error format
	2.2.1 Definition of Signal Ranges
	2.2.2 Error Status Format

	2.3 Universal Uncompensated Measurement Array (UUMA) format
	2.4 Simulated SPI interface Signal Format
	2.5 Rapid Decompression Event Array (T_RDE) Format
	2.6 LFR registers initialized by firmware

	3 Firmware Functions
	3.1 Firmware jump table
	3.2 Function description
	3.2.1 void TPMS_RESET (void)
	3.2.2 UINT8 TPMS_READ_VOLTAGE (UINT16 *u16UUMA)
	3.2.3 UINT8 TPMS_COMP_VOLTAGE (UINT8 *u8CompVoltage, *UINT16 u16UUMA)
	3.2.4 UINT8 TPMS_READ_TEMPERATURE (UINT16 *u16UUMA)
	3.2.5 UINT8 TPMS_COMP_TEMPERATURE (UINT8 *u8Temp, UINT16 *u16UUMA)
	3.2.6 UINT8 TPMS_READ_PRESSURE (UINT16 *u16UUMA, UINT8 u8Avg)
	3.2.7 UINT8 TPMS_COMP_PRESSURE (UINT16 *u16CompPressure, UINT16 *u16UUMA)
	3.2.8 UINT8 TPMS_READ_ACCELERATION_X (UINT16 *u16UUMA, UINT8 u8Avg, UINT8 u8FiltSelect, UINT8 u8DynamicOffset)
	3.2.9 UINT8 TPMS_READ_DYNAMIC_ACCEL_X (UINT8 u8Filter, UINT8* u8Offset, UINT16* u16UUMA)
	3.2.10 UINT8 TPMS_COMP_ACCELERATION_X (UINT16 *u16CompAccelX, UINT16* u16UUMA)
	3.2.11 UINT8 TPMS_READ_ACCELERATION_Z (UINT16 *u16UUMA, UINT8 u8Avg, UINT8 u8FiltSelect, UINT8 u8DynamicOffset)
	3.2.12 UINT8 TPMS_READ_DYNAMIC_ACCEL_Z (UINT8 u8Filter, UINT8* u8Offset, UINT16* u16UUMA)
	3.2.13 UINT8 TPMS_COMP_ACCELERATION_Z (UINT16 *u16CompAccel, UINT16* u16UUMA)
	3.2.14 UINT8 TPMS_READ_ACCELERATION_XZ (UINT16 *u16UUMA, UINT8 u8Avg, UINT8 u8FiltSelect, UINT8 u8DynamicOffsetX, UINT8 u8DynamicOffsetZ)
	3.2.15 UINT8 TPMS_READ_DYNAMIC_ACCEL_XZ (UINT8 u8Filter, UINT8* u8OffsetX, UINT8* u8OffsetZ, UINT16* u16UUMA)
	3.2.16 UINT8 TPMS_COMP_ACCELERATION_XZ (UINT16 *u16CompAccel, UINT16* u16UUMA)
	3.2.17 UINT8 TPMS_READ_V0 (UINT16 *u16Result, UINT8 u8Avg)
	3.2.18 UINT8 TPMS_READ_V1 (UINT16 *u16Result, UINT8 u8Avg)
	3.2.19 UINT8 TPMS_LFOCAL (void)
	3.2.20 UINT8 TPMS_MFOCAL (void)
	3.2.21 void TPMS_RF_ENABLE (UINT8 u8Switch)
	3.2.22 void TPMS_RF_RESET (void)
	3.2.23 void TPMS_RF_READ_DATA (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.24 void TPMS_RF_READ_DATA_REVERSE (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.25 void TPMS_RF_WRITE_DATA (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.26 void TPMS_RF_WRITE_DATA_REVERSE (UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.27 void TPMS_RF_CONFIG_DATA (UINT16 *u16RFParam)
	3.2.28 void TPMS_RF_SET_TX (UINT8 u8BufferSize)
	3.2.29 void TPMS_RF_DYNAMIC_POWER (UINT8 u8CompT, UINT8 u8CompV, UINT8* pu8PowerManagement)
	3.2.30 void TPMS_MSG_INIT (void)
	3.2.31 UINT8 TPMS_MSG_READ (void)
	3.2.32 UINT8 TPMS_MSG_WRITE (UINT8 u8SendByte)
	3.2.33 UINT8 TPMS_CHECKSUM_XOR (UINT8 *u8Buffer, UINT8 u8Size, UINT8 u8Checksum)
	3.2.34 UINT8 TPMS_CRC8 (UINT8 *u8Buffer, UINT16 u16SizeInBytes, UINT8 u8Remainder)
	3.2.35 UINT16 TPMS_CRC16 (UINT8 *u8Buffer, UINT16 u16MByteSize, UINT16 u16Remainder)
	3.2.36 UINT16 TPMS_SQUARE_ROOT (UINT16 u16Process)
	3.2.37 void TPMS_READ_ID (UINT8 *u8Code, UINT8 u8Offset)
	3.2.38 void TPMS_LF_ENABLE (UINT8 u8Switch)
	3.2.39 UINT8 TPMS_LF_READ_DATA (UINT8 *u8Buffer, UINT8 u8Count)
	3.2.40 UINT8 TPMS_WIRE_AND_ADC_CHECK (UINT8 u8TestMask)
	3.2.41 void TPMS_FLASH_WRITE (UINT16 u16Address, UINT8* u8Buffer, UINT8 u8Size)
	3.2.42 UINT16 TPMS_FLASH_CHECK (void)
	3.2.43 UINT8 TPMS_FLASH_ERASE (UINT16 u16Address)
	3.2.44 UINT8 TPMS_FLASH_PROTECTION (UINT16 u16Key)
	3.2.45 void TPMS_MULT_SIGN_INT16 (INT16 i16Mult1, INT16 i16Mult2, INT32* pi32Result)
	3.2.46 UINT16 TPMS_WAVG(UINT8 u8PNew, UINT16 u16POld, UINT8 u8Avg)
	3.2.47 void TPMS_RDE_ADJUST_PRESSURE (UINT16* pu16UUMA, T_RDE* ptRDEValues)

	4 Revision history
	5 Legal information
	Tables
	Figures
	Contents

