
GS-C200
GS-C200S

INTELLIGENT STEPPER MOTOR CONTROLLERS

June 1994 1/31

DESCRIPTION

The GS-C200 and GS-C200Sare powerful stepper
motor control modules that interface every power
sequencer/driver available on the market.

A sophisticated hardware and an easy to learn
programming language result in minimal develop-
ment and debugging time of motion control sys-
tems. The modules are supported by dedicated
software that includes both an on-screen editorand
a debugger that greatly improve the module ease
of use.

The instruction sets comprise respectively 25 (GS-
C200) and 29 (GS-C200S) different commands

FEATURES
Absolute and incremental positioning
Up to 999,999 step per move
Speed range to 10,000 steps/s
Ramp lenght to 999 steps
Single unregulated supply voltage
Index and velocity mode
Automatic and Home positioning
Loops and Delay execution
Conditional start and stop
Status feedback to the host
RS232 communication port
Point to point and Multipoint protocol
Closed loop operation
Counter preset (GS-C200S only)
Jump to (GS-C200S only)
Jump to on-condition (GS-C200S only)
Initialization during execution (GS-C200S only)
Auxiliary output voltages +5V, ± 12V

which can be executed either under host control or
in a stand alone environment. An on board EE-
PROM is used for program saving and retrieving.
The availability of three User inputs and three
programmable User outputs, each of which can be
tested or set under program control, assures to the
designer ahigh level of system power and flexibility.

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

Vs DC SupplyVoltage 42 V

Tstg Storage Temperature Range – 40 to + 85 °C

Top Operating Temperature Range 0 to + 50 °C
Humidity (non condensing) 0 to 90 %

2/31

ELECTRICAL CHARACTERISTICS (TA = 25C and Vs=24V unless otherwise specified)

Symbol Parameter Min Typ Max Unit

Vs DC SupplyVoltage 12 40 V

Is Quiescent Supply Current 80 mA

Vi
Logic Input Voltage
(TTL compatible)

Low
High 2

0.8
5

V
V

Vo
Logic Output Voltage
(TTL compatible)

Low
High 2

0.8
5

V
V

tcpw Clock Pulse Width 5 µs

trpw Reset Pulse Width (Internal) 500 µs

COMMUNICATION PORT CHARACTERISTICS

SIGNAL LINES 3 (TxD, RxD, GND)

BAUD RATE RANGE 110 to 9600

FORMAT 1 Start Bit

7 Data Bit

2 Stop Bit

Odd parity

MOTION CHARACTERISTICS

SPEED RANGE 10 to 10000 steps

SPEED RESOLUTION 10 steps

RAMP LENGHT 1 to 999 steps

RAMP RESOLUTION 1 step

POSITIONINGRANGE(C200)
(C200S)

0 to 9999999
– 8388608 to + 8388607

SINGLE MOVEMENT RANGE 1 to 999999 steps

POSITIONING RESOLUTION 1 step

POSITIONINGREPEATIBILITY +/– 0 step

PROGRAM STORAGE
CAPABILITY

119 bytes

STORAGE CAPACITY

MINIMUM NUMBER OF COMMANDS 30

MAXIMUM NUMBER OF COMMANDS 45

GS-C200 / GS-C200S

Figure 1. Block Diagram

3/31

CONNECTION DIAGRAM AND MECHANICAL DATA

Dimensions in mm. Bottom view

GS-C200 / GS-C200S

4/31

PIN DESCRIPTION

Pin Function Description

1 SEL0 Protocol/address LSB select input

2 SEL1 Protocol/address SSB select input

3 SEL2 Protocol/address MSB select input

4 BR0 Baud rate LSB select input

5 BR1 Baud rate SSB select input

6 BR2 Baud rate MSB select input

7 CHS Checksum enable input

8 GND Ground

9 REC Program autorecall input

10 Must be connected to pin 8

11 RXD RS232 received data input

12 TXD RS232 transmitteddata output

13 TXPD Transmitted data pull-down resistor

14 RDY Status logic output

15 –VSL Unregulated –12V supply output (note 1)

16 +VSL Unregulated +12V supply output (note 1)

17 Vs Supply voltage input

18 Vs Supply voltage input

19 GND Ground

20 5V 5V Auxiliary output (note 2)

21 5V 5V Auxiliary output (note 2)

22 MOV Motor moving logicoutput

23 RAMP Motor ramping logic output

24 ENABLE Stop enable logic input

25 Not connected

26 DIR Direction selection logic output

27 RESET Power driver Reset logic output

28 CLOCK Step clock logic output

29 Not connected

30 HOME Home position logic input

31 UO1 User 1 logic output

32 EOT End of travel switch logic input

33 UO2 User 2 logic output

34 UI1 User 1 logic input

35 UO3 User 3 logic output

36 UI2 User 2 logic input

37 UI3 User 3 logic input

38 GND Ground

Notes: 1 – Maximum available current is 10mA
2 – Maximum available current is 100mA

GS-C200 / GS-C200S

The various signals that characterize the GS-C, their function and the active level are described in detail
in the following:

Pin Function

1 - 2 - 3 The SEL0 (pin1), SEL1 (pin2) and SEL2 (pin3) inputs are used to select the communication protocol and
the module address. They have an internal pull-up and when unconnected they are at the 1 logic level.

4 - 5 - 6
The BR0 (pin4), BR1 (pin5) and BR2 (pin6) inputs are used to select the Baud rate of the
communication port. They have an internal pull-up and when unconnected they are at the 1 logic level.

7
The CHS checksum generation conditioning input enables the user to include or exclude the checksum
character from the data exchange string. A ”zero” logic level applied to this input disables the control and
the generation of the checksum character thus allowing the GS-C to be connected to a video terminal.

8 This pin is the common terminal for all logic signals and for the power supply return path.

9 The REC Recall Program Enable input pin, when brought to ”zero”, enables the automatic recall of the
program stored in the EEPROM and its immediate execution.

10 This pin is for testing purpose only and it must be grounded for normal operation.

11 The RxD input of the serial communication port is used by the module to receive commands from the
Host Computer. The input logic levels are compatible with the RS232 and V24 standards.

12
The TxD output of the serial communication port is used by the module to send data to the Host
Computer. The logic levels of this output are compatible with the RS232 and V24 standards.

13
The TxPD Transmitted data pull-down resistor pin must always be connected to the TxD output (pin 12)
when the Point-to-Point protocol is used. When the Multipoint protocol is selected, this pin must be left
open on all modules except the chain terminator unit, in order to avoid the TxD output overload.

14
The RDY hardware status output (open collector) signal pin is used as the controller status flag. RDY
assumes a ”zero” logic level when a command or a program is in execution

15 –12V unregulated output. A maximum of 10mA can be sinked from this pin.

16 +12V unregulated output. A maximum of 10mA can be sinked from this pin.

17 - 18 Module supply input. For correct operations a supply voltage ranging from 12 to 40 Volt is required.

19 See pin 8.

20 - 21 5 Volt regulated output, available either for the Sequencer-Driver logic section or for a custom interface
logic supply. The maximum current that can be sinked from this pin is 100mA.

22
The MOV Motor moving output becomes the logic level ”one” when the GS-C is executing a movement.
This output can be used to program the phase current level when the motion is running at a level higher
than for the rest condition.

23
The RAMP Ramp in execution output is rised to the logic level ”one” when the GS-C is executing an
acceleration or a deceleration ramp. This output can be used to program the phase current level when
the motion is ramping at a level higher than for the rest or slewing condition.

24

The ENABLE input pin allows the user to control the Step clock logic output to avoid the motor being
stepped if the previous step was not correctly executed. A ”zero” logic level applied to this pin stops the
generation of the step pulses. This input can be used to stop the system when an emergency occurs, to
execute the motion according to externally generated timing, or to implement a closed loop control
system.

25, 29 Not connected.

26
The DIR Direction selection output is used to inform the Sequencer-Driver on the direction of rotation.
The logic level ”one” determines a clockwise rotation, but of course the rotation depends on the motor
phases connection to the Sequencer-Driver.

27
The RESET Power driver Reset output is brought to the ”zero” logic state for 400µs when the unit is
powered-on, or when the GS-C receives the ”Initialize position counter” command. This output is
normally used to assure the correct start-up of the Sequencer-Driver or any other external custom logic.

5/31

GS-C200 / GS-C200S

6/31

Pin Function

28

The CLOCK Step clock output is used to inform the Sequencer-Driver to perform a step. The direction
(clockwise or counterclockwise) is defined by the logic status of the DIR output. In steady conditions, the
CLOCK is at the ”one” logic level, and the step is represented by a negative going pulsewith a 1.7µs
duration.

30
The HOME Home position input allows the system to find its reference point. This input can be driven by
a mechanically activated contact indicating the ”zero” position. It is normally used together with the EOT
End-of-travel signal.

31

The UO1 User output 1 is intended for user purposes. The status of this output can be set and cleared
under program control and it can be used forvarious functions. It is normally used for the control of
external devices, the selection of the Sequencer-Driver operating mode, or the synchronization of
complex movements.

32
The EOT End-of-travel input allows, in combination with the HOME input, the correct mechanical
initialization of the system. For this purpose it must be brought to the ”zero” logic level when the system
reaches the run end position.

33 The U02 User output 2 is intended for user purposes. See pin 31 description.

34
The UI1 User input is intended for user purposes. The status of this input can be read by the Host
Computer or tested during the program execution, and used to condition the start of a movement, the
execution of a specific portion of a program (GS-C200S only), or any other similar operation.

35 The UO3 User output 3 is intended for user purposes. See pin 31 description.

36 The UI2 User input 2 input is intended for user purposes. See pin 34 description.

37 The UI3 User input 3 input is intended for user purposes. See pin 3 and pin 4 description.

38 See pin 8.

Figure 2. GS-C Timing Diagram

GS-C200 / GS-C200S

7/31

S.I.M.P.L.E. Interpreter Command and Functions
(SGS-THOMSON Interactive Stepper Motor Programming Language and Executor)

Command Byte
Length Function

Ax 2 Activate the specified (x) User output.

Cx 2 Clear the specified (x) User output.

Dxxx 2 Delay for the specfied number (xxx) of tenth of second.

E – Start executing the program currently stored into RAM memory.

F – Feedback the GS-C status (i.e. Ready or Busy).

f+/–xxxxxxx 4 Preset the position counter to the specified absolute value (C200S).

G+/–xxxxxxx 4 Go to the specified target position (C200S).

g(+/–) 4 Move the motor indefinitely in the specified direction.

g(+/–)x 4 Move the motor in the specified direction until the specified (x) input is brought to zero.

H(+/–) – Find Home position moving clockwise (+), or moving counterclockwise (–).

Ix 2 Initialize the position counter (x=1), the user outputs (x=2), or both (x=3).

jx 2 Jump to memory location (x). Location (x) ranges between 0 and 118 (C200S).

jcy,x 2 Jump to memory location (x) if the binary value of the user inputs matches (y) value (C200S).

K – Kill the program in execution.

Lx 2 Loop for the specified (x) number of times.

M – Transfer the RAM memory content to EEPROM.

P – Enter the programming mode (C200).

Po – Enter the programming mode (C200S).

Px – Exit the programming mode (C200S).

Q – List to the host the program currently in RAM memory.

Rxxx 4 Set the Ramp length to the specified (xxx) value.

Sxxx 4 Set the start-stop speed to the specified (xxx) value.

Txxx 4 Set the slew rate speed to the specified (xxx) value.

Ux 2 Execute the program until the specified (x) user input is brought to a low level.

Vx – Read back the current position (x=1) or the user I/O status (x=2).

X – Transfer the program from EEPROM to RAM.

Wx 2 Wait until the specified (x) user input is raised to a logicone level.

Z – Stop through a deceleration ramp.

+/–xxxxxx 4 Move clockwise (+) or counter-clockwise (–) for the specified (xxxxxx) number of steps.

GS-C200 / GS-C200S

8/31

GS-C200 AND GS-C200S DESCRIPTION

The increasing popularity of microprocessors and
their very low cost, have contributed to a fast growth
of stepper motors usage in a large numbers of
application previously covered by more complex,
bulk and expensive DC motors servo loops. The
GS-C200 and the GS-C200S modules have been
conceived to help the industrial designer in design-
ing the stepper motor applications based on micro-
processor control.

These modules are programmable intelligent step-
per motor controllers that coordinate highly com-
plex movements and sequential operations. This
capability is performed through the integration of
sophisticated hardware and an easy to learn and
very functional and powerful programming lan-
guage.

Thanks to this high level programming language,
the power of the instruction set and the ability to
condition and control the program execution
through the USER inputs andoutputs, the GS-C200
and GS-C200S drastically reduce the design time
and start-up manufacturing phase of very complex
systems. The GS-C200S offers an advanced and
powerful instruction set that includes also the con-
ditional jump which allows for more efficient pro-
gram-ming. The GS-C200, the GS-C200S and their
companion modules, the GS-D200 and the GS-
D200S, can be used to drive in chopped mode of
bipolar stepper motor with a 2/2.5A maximum
phase current rating.

The two modules (GS-C and GS-D) are available
also on a single Eurocard board named respec-
tively GS-DC200, GS-DC200S and GS-DC200SS
according to the various modules combination (see
the relevant data sheet). In the following the mod-
ules will be generically named GS-C. The specific
module part number will be used when the feature
is unique to that module.

A MOTION SYSTEM ARCHITECTURE

A complete motion system controlled by a host
computer is normally configured as per fig. 3.

Figure 3. A Motion System Block Diagram

The GS-C logical and functional architecture is
shown in fig. 1 and it includes the following basic
blocks:

– Interface to the Host Computer via an RS232
communication port.

– Address and baud rate selection.

– Interface to the Sequencer-Driver (in particular
but not exclusively, to the GS-D200 or GS-
D200S) via 5 output and 3 input lines

– Command Interpreter and Executor.

– Program storage area

– Power Supply.

The above mentioned functions are performed by
the GS-C without the addition of any external com-
ponent, and the module flexibility is further en-
hanced by the use of only one unregulated supply
voltage that can be the same used to supply the
Sequencer-Driver (from 12V up to 40V).

Commands are sent to the module by a Host Com-
puter or by a simple video terminal during the
programming/debugging phase through an RS232
serial port. They are interpreted and validated by
the command interpreter and executed through the
Sequencer-Driver interface.

Command execution can be conditioned and con-
trolled by the status of the USER IN-OUT interface.

A program storage area has been added to perma-
nently store a program in an on-board EEPROM;
this is particulary beneficial to obtain a low cost
stand-alone controller that doesnot need any con-
nection to an external computer or to store pro-
grams frequently used in complex motion
sequencies thus reducing the host computer bur-
den and speeding up the system processing.

Particular attention has been given to the simplicity
of the instruction set to allow an easy design of the
system to those designers that are not very familiar
with microprocessor software and programming.

In the following a detailed description of the various
functional blocks is given.

GS-C200 / GS-C200S

INTERFACE TO THE HOST COMPUTER AND
DATA PROTOCOL

The interface to the Host Computer is through an
RS232 or V24 serial communication port.

Baud Rate Programming

The Baud rate is programmed between 110 and
9600 bit/sec by using the BR0, BR1 and BR2 inputs
according to the following table:

BR0 (p4) BR1 (p5) BR2 (p6) Baud Rate

0 0 0 9600

1 0 0 4800

0 1 0 2400

1 1 0 1200

0 0 1 600

1 0 1 300

0 1 1 150

1 1 1 110

This setting is obtained by connecting the pins 4, 5,
and 6 to ground (0 status) or by leaving them open
(1 status). The communication port does not use
any control line but just the transmit and receive
signals. The host computer must handle the data
excange in the proper way.

Module Address Programming

The communication protocol can be either Point to
Point or Multipoint. In the first case a single com-
munication line is required for each module, while
in the latter more than one module (up to seven)
can share the same communication line.

The Multipoint protocol as well as the peripheral
device address are selected through SEL0, SEL1
and SEL2 inputs. The Point-to-Point protocol is
selected by connecting all the SEL inputs to the 5V
output pin (pin 20) or by leaving them open.

The following table defines the protocol and the
address setting:

SEL2 SEL1 SEL0 Address Protocol

0 0 0 7 Multipoint

1 0 0 6 Multipoint

0 1 0 5 Multipoint

1 1 0 4 Multipoint

0 0 1 3 Multipoint

1 0 1 2 Multipoint

0 1 1 1 Multipoint

1 1 1 – Point-to-Point

9/31

When the multipoint connection is chosen, the ad-
dress of each module isobtained by connecting the
various SEL pin (1, 2, 3) to ground (0 status) or by
leaving them open (1 status).

The basic difference between the two protocols is
represented by the sytem wiring complexity and the
data throughput. The Point-to-Point offers the
higher throughput data rate but it requires a con-
necting cable for each unit, while the Multipoint
minimizes the connecting cables but at reduced
throughput rate. When this latter protocol is chosen,
the command must always be preceeded by the
address of the unit.

Data Exchange Protocol

The dialogue is always driven by the Host Com-
puter which sends the string containing the com-
mand or the request to be implemented. The GS-C
module stores the instruction sent by the Host and
then it checks if the string has been correctly re-
ceived by analyzing the parity bit. It then analyzes
the consistency of the received instructions by veri-
fying the presence and correctness of the argu-
ment, and finally, it checks whether the request can
be processed or not (for example, an attempt to
move outside the system limits, etc.) reporting to
the Host the analisys result. If no error is detected,
the GS-C replies to the Host by a ”Y” message. In
case of error, the message will be ”Error X” request-
ing the Host to send the message again or to modify
some parameters of the previous message to fix the
error detected by the GS-C. The actual value of X
(see fig. 4 and error code table) gives the Host the
information on the type of detected error. The pro-
cedure implemented for the dialogue with the Host
is shown on the flowchart of fig. 4.

Figure 4. Controller-Host Dialogue Flowchart.

GS-C200 / GS-C200S

The general format of a command string is the
following:

ADDRESS COMMAND ARGUMENT CHECKSUM CAR.RETURN

The Address must be the first transmitted charac-
ter and it is present only if the Multipoint protocol is
used (at least one of SEL0, SEL1, SEL2 is different
from zero).

The Command is the second character(s) of the
string, in the Multipoint protocol, but it becomes the
transmission opening character when the Point-to-
Point protocol is used (SEL0, SEL1 and SEL2 = 0).

The Argument , if required, isspecified immediately
after the command and its length depends on the
command type.

The Checksum character verifies the correctness
of the received string; its value is determined by the
sum of the binary values of the preceding charac-
ters. The result is cut at the seventh least significant
bit and ORed with exadecimal 10 (C200S/C200
from V2.2) to make the result compatible with the
transmission system. The last character, the string
ending character, is always a Carriage Return that
will be identified in the following by the symbol (↓).

By connecting the pin CHS (pin 7) to ground, the
checksum character is not anymore requested, and
the task of guaranteeing the correctness of the
message is left to the parity bit. It should be noted
that by using this dialogue mode, the data integrity
confidence level is reduced. Because motion sys-
tems normally operate in manufacturing premises
subjected to heavy electro-magnetic noise, and
because any communication problem may have
catastrophic effects on the system actions, it is a
good practice to use the checksum character when-
ever possible. The checksum character is normally
not used (pin CHS connected to ground) when the
GS-C is connected to a video-terminal, i.e. during
the initial programming and debugging phase. In
the following, three examples of command strings
sent to a GS-C module are given.

Example 1 - MULTIPOINT PROTOCOL. The Host
Computer wants to set the USER output 3 of the
module #2. The command will have the following
format:

10/31

The checksum character 6 results from the binary
sum of the character 2 (ASCII value = 32) + char-
acter A (ASCII value = 41) + character 3 (ASCII
value = 33) truncated at the seventh bit.

Example 2 - POINT-TO-POINT PROTOCOL.

The same instruction is given by the Host to a Point
to Point connected module.

The command will have the following format:

A3t↓

The checksum character has an ASCII value t that
derives from the sum of the ASCII code A+3 = 41+33
= 74 in binary weighted code or t in ASCII code.

Example 3 - POINT-TO-POINT PROTOCOL
WITHOUT CHECKSUM.

For the same instruction, the command format will
be:

A3↓

The string consists of command and argument only.

The GS-C feeds back information to the Host every
time it receives a command, therefore it has not to
identify itself to the Host when answering in a
Multipoint connection.

The formatof the string answered back by the GS-C
is the following:

ANSW.CODE ARGUMENT CHECKSUM CAR.RETURN

The first character, which always identifies the an-
swer type, may assume one of the following values:

Y The command string has been correctly
received.

B The controller is Busy and cannot process
commands.

R The controller is Ready to process commands.

E An error has been detected. The type of error
is specified by the number following the ”E”.

V A controller status (a position or an USER
input/output status) is sent back and its value
is specified by the characters following the ”V”.

The length of the Argument, present only for ”E” and
”V” answers, can range between 1 and 7 charac-
ters, and it is a function of the received command.
The number following the ”E” code, i.e. the error
argument, specifies the detected error type accord-
ing to the following table:

2A36↓

Address
Module #2

Command
Activate

Argument
USER out 3

Carriage return

Checksum

GS-C200 / GS-C200S

Error code Type of error

1 Parity error when receiving one or more
characters, checksum error, or too long a
command string.

2 Command argument out of limit or not
requested.

3 Storage capacity overflow.

4 Not allowed or not executable command.

5 Overflow error during program execution
(GS-C200 only).

6 EEPROM programming error.

The number following the ”V” code depends on the
type of the received command.

When the GS-C answers to a ”V1” request (feed-
back the actual absolute position against the Home
position), the answer will be:

Vxxxxxxx↓
where the xxxxxxx represent the absolute position.

When the GS-C answers to a ”V2” request (feed-
back the USER input/output status), the answer will
be:

Vxy↓
where the x and y meaning is:

x = 1 User Input 1 = 1

x = 2 User Input 2 = 1

x = 4 User Input 3 = 1

y = 1 User Output1 = 1

y = 2 User Output 2 = 1

x = 4 User Output 3 = 1

The logic values of the inputs and outputs are
added together. For example the answer:

V36↓
indicates the following USER I/O status:

UI1 = 1 UO1 = 0

UI2 = 1 UO2 = 1

UI3 = 0 UO1 = 1

3 6

The presence ofChecksum character,whose value
is calculated by using the method described in the
previous example, is conditioned by the CHS pin
status.

When CHS is grounded (either by a logic signal or
by a strap to ground) the checksum is deleted.

The string terminator is, as in the previous case, a
Carriage Return.

11/31

THE SEQUENCER-DRIVER INTERFACE
The interface to the Sequencer-Driver and, through
it, to the mechanical environment, consists of eight
logic signals (5 outputs and 3 inputs) which enable
the GS-C intelligent controller to interface the GS-
D200 or the GS-D200S modules as well as any
Sequencer Drivers currently available. The eight
signals can be divided into two groups, named
respectively:

PRIMARY SIGNALS

UTILITY SIGNALS

The primary signals are those necessary for the
correct system operation:

RESET Output to reset the Sequencer-
Driver.

CLOCK Step clock output.
DIR Direction output.

ENABLE Step enable input.

The function of each signal is described in detail in
section PIN DESCRIPTION on page 4/31; it will be
shown later that the Step Enable Input in conjunc-
tion with the position sensor of the motor, allows the
implementation of closed loop systems (see para-
graph Closed Loop Operation on pag. 27). The
Utility signals allow the optimization of the driving
system and the minimization of the hardware. They
are:

MOV Movement in execution output.

RAMP Ramp in execution output.
EOT Mechanical End of Travel input.

HOME Electrical Home Position input.

By using these signals it is possible to correctly
define the system starting point or reference posi-
tion, or to change the current in the motor windings
during the acceleration and deceleration phases in
order to optimize the motor performance.

A typical example of the utility signals implementa-
tion is given here. Let’s suppose that the required
speed profile is as shown in fig. 5.

Figure 5. Speed-Time Profile.

GS-C200 / GS-C200S

12/31

To optimize the motor torque during the accelera-
tion and deceleration (t1 and t3) it is convenient to
use a phase current profile as shown in fig. 6.
During the SLEW phase (t2) when the motor rotates
at constant speed, the current is reduced to the
minimum value necessary to compensate the sys-
tem losses (friction) and the load inertia. During the
STALL phase (t0 and t4) the current is further re-
duced to the bare value necessary to maintain the
load in the right mechanical position. By using this
current profile the power dissipation of the Se-
quencer-Driver and motor is optimized.

This profile can easily be implemented by using the
utility signals:

MOV Movement in execution.

RAMP Ramp in execution.

Figure 6. Phase Current-Time Profile.

Figure 7. USER Output Applicative Example

The status of these two outputs can be used to set
the appropriate phase current value for the power
driver, by a simple but effective interface circuit that
is described in detail in fig. 11 of paragraph PHASE
CURRENT PROGRAMMING on page 24.

THE USER INTERFACE
The USER interface consists of three inputs and
three outputs which are TTL compatible. They can
be read and/or activated during the execution of a
program under the complete user control; therefore
they condition a program execution.

These signals allow the implementation of complex
movements, minimizing the program length and the
use of external hardware. The start of a movement
or of a sequence can be conditioned by a logic level
applied to one or more inputs, thus performing the
”mechanical tree” function.

The USER outputs logic state is set by program
instructions and this information can be used by
other controllers to synchronize multiple move-
ments or to control external drivers.

By using only these signals, it is possible to build
up simple systems which implement cyclic move-
ments and create a true stand-alone system. The
example reported in figure 7 shows one of the
possible utilization of USER output. The example

refers to a complete motion control system imple-
mented by using the GS-C200 controller and the
GS-D200 Sequencer-Driver. The USER output
UO1 is used to enable the GS-D200 (UO1 High) or
to inhibit it (UO1 Low).

The USER output UO2 is used to select the motor
current decay inherent to the chop mode control of
GS-D200. When UO2 is high a slow decay is im-
posed to the phase current during recirculation;
when UO2 is low a fast decay is selected.

The USER output UO3 allows the selection between
the half and full-step mode of operation of the
GS-D200. Half-step occurs when UO3 is high.

The GS-C200S is capable of executing a jump
command either direct or conditioned by the logic
status of the USER inputs. This capability is very
useful because it allows complex programs to be
written by using a limited number of instructions. This
feature makes also possible to have a segmented
program contained in the internal memory; the selec-
tion and the subsequent execution of the needed
program segment is started by a specific logic status
applied to the USER inputs.

THE S.I.M.P.L.E. COMMAND INTERPRETER
AND EXECUTOR AND THE PROGRAMMING
LANGUAGE
The GS-C modules contain an interpreter program
named S.I.M.P.L.E., acronym for SGS-THOMSON
Interactive Stepper Motor Program Language and
Executor, that recognizes simple mnemonic com-
mands, verifies the correctness of the received com-
mandsand executes the instruction sequences ofeach
command or acomplete command sequence by trans-
lation into complex executable instructions. The inter-
preter recognizes three different types of commands:

DIRECT EXECUTION COMMAND

DELAYED EXECUTION COMMAND

UTILITY COMMANDS

GS-C200 / GS-C200S

Direct execution commands are immediately actu-
ated. They include: start and stop the program
execution, set the programming mode, check posi-
tion, check I/O, etc...

Delayed execution commands are run when re-
quested by the sequence currently stored in memo-
ry. By using a combination of these commands, it
is possible to perform very complex movements
including also the conditioning by external stimulus,
the iteration of a specific sequence for a defined
number of times.

Utility commands allow the GS-C modules to per-
form several additional functions such as the detec-
tion of the position, phase current optimization etc...
These commands, when properly used, speed up
the system debugging phase and they increase the
system efficiency.
Note: To easily learn how to program the GS-C and to minimize
development time, a P.C. based self explaining and interactive pro-
gram named F.A.S.T. (First Advanced Stepper motor Training pro-
gram), able to communicate with the module by using the
Point-to-Point protocol, has been developed and it is available to the
end user. (See GS-C200PROG data sheet).

Command strings can be easily implemented also
by using a high level language such as BASIC, or
they can be generated by a dedicated microcontrol-
ler programmed in machine language. The dia-
logue speed is limited by the time required to
construct the command string and to analyze the
GS-C data, and it results noticeabily reduced when
a ”machine language” program is used.

The program, after testing, can be stored in the
EEPROM included in the GS-C module and then
loaded and automatically executed at power-up,
resulting in a low cost stand-alone system. It is also
possible to save the program as a DOS file on a
floppy disk for future retrieval, or to ease the field
update of the program itself.

Every command is identified by one or two charac-
ters and by a variable length argument (from 0 to 7
characters). If the Multipoint communication proto-
col is used, the address is specified by the number
that preceeds the command. All the commands
sent by the Host, as well as the data generated by
the GS-C, are terminated by a Carriage Return
(ASCII value = 0D).

In the following pages all the commands which may
be executed by the GS-C200 and the GS-C200S
are detailed, as well as their format. A practical
example of the command usage is also given. The
presence of an asterisk at the end of the command

denotes that the command is executable only by
the GC-C200, while two asterisk denote a com-
mand executed only by the GS-C200S.

Each command is shown in the same format used
during the programming phase, i.e. the command
identifier plus the argument:

Gsxxxxxxx

The argument can be single, double or missing
according to the various command types.

The various argument are identified by different
letters according to the particular type i.e.:

s = sign + or –

x = figure 1 to 3

y = figure 0 to 7

v = value 1 to 999 depending on command

p = position 1to 999999 incremental or the
absolute position

Apart the different number of executable com-
mands and functions, the GS-C200S and the GS-
C200 look very similar each other. The only
foundamental difference is the way they manage
the position counter.

The position counter is the reference ruler for the
microprocessor to move correctly from the actual
position to the targeted one, executing the proper
number of steps in the right direction.

The GS-C200 position counter allows a maximum
of ten million steps to be executed, and the home
position corresponds to the 0 count position. When
a movement is larger than the position ruler limits
an Error 5 is reported to the Host.

The GS-C200S position counter allows a maximum
total count of 224 step ranging from –8388608 to
+8388607 steps. When the maximum count is ex-
ceeded the counter wraps-around. For example if
the position counter is +8388606 and a +5 steps
movement is executed, the final position will be:

+8388606 Initial position

+8388607 After 1 step execution

–8388608 After 2 stepsexecution

–8388607 After 3 stepsexecution

–8388606 After 4 stepsexecution

–8388605 Final position

Of course no error is reported.

13/31

GS-C200 / GS-C200S

14/31

Command Description

Ax The Activate command sets a User output to the active logic level ”one”.
The command is always followed by an argument whose value ranges between 1 and 3, and that
specifies the User output to be activated. The command string:

A2↓

causes the UO2 output to be set to the logic level ”one”.
The Activate command is of the delayed execution type and it occupies 2 memory locations.

Cx The Clear command clears a User output, i.e it forces the logic level to ”zero”.
The command is always followed by an argument whose value ranges between 1 and 3, and that
specifies the User output to be cleared.
The command string:

C3↓

cleares the UO3 output by forcing it to the logic level ”zero”.
The three USER outputs are automatically cleared at power-up.
The Clear command is of the delayed execution type and it occupies 2 memory locations.

Dvvv The Delay command allows the execution of a delay.
The instruction is always followed by an argument whose value ranges between 1 and 255, and that
specifies the duration in tenth of sec. of the delay to be executed.
The command string:

D15↓

causes a 1.5 seconds delay to be executed before the next instruction is considered.
The Delay command is of the delayed execution type and it occupies 2 memory locations.

E The Execute command starts the execution of the program stored in memory.
It is also used to terminate the GS-C200 programming session and no argument is required.
The Execute command is of the immediate execution type.

F The Feedback command allows the host computer to know whether the controller is ready to
receive a command or not. To comply with this request, the GS-C replies by:

B↓ (Busy)

in case it is executing a program, or:

R↓ (Ready)

if it is ready to receive a command, or:

E5↓ (Error)

This latter answer, used only by the GS-C200, indicates that during the program execution the
position counter has reached the overflow condition (i.e. > 9999999).
The feedback command is of the immediate execution type.

fsxxxxxxx** The force command, executable only by the GS-C200S, allows the user to preset the position
counter to the desiredvalue.
This command is always followed by the sign and the value of the position that spans from
– 8388608 to + 8388607.
The force command is of the delayed/immediate execution type and it occupies 4 memory
locations.

Gxxxxxxx * The Goto command forces the motor to reach the specified target position.
This command, executed exclusively by the GS-C200, is always followed by an argument whose
value ranges between 0 and 9999999, and it defines the position to be reached.
The 0 position coincides with the Home position or with the positionwhere an Initialize command
has been sent.
The Goto command is of the delayed execution type and it occupies 4 memory locations.

GS-C200 / GS-C200S

15/31

Command Description

Gs * The ”velocity mode” Goto command allows to move the motor continuously, i.e. the motor is
accelerated to the programmed speed and then it slews indefinitely in the selected direction until a
”stop” command is received.
The command is always followed by the direction information.
The command string :

G+↓

move the motor in the clockwise direction while:

G–↓

move the motor in the counterclockwise direction. To stop the motor either the Z or the K command
can be used.
The ”velocity mode” Goto command is of the delayed execution type and it occupies 4 memory
locations.

Gsx * A further possibility offered by the Goto command, that greatly improves the GS-C200 flexibility, is
the ”controlled velocity mode” operation.
This command is followed by the direction information and by the User input to be tested to stop the
operation.
This occurs when a ”zero” level is applied to the specified User input. For example the command
string:

G+2↓

causes the motor to ramp to the programmed slew speed and to move at this speed until the UI2
input is brought to ”zero”.
The ”controlledvelocity mode” Goto command is of the delayed execution type and it occupies 4
memory locations.

Gsxxxxxxx** The Goto command forces the motor to reach the specified target position.
This command, executed exclusively by the GS-C200S, is always followed by an argument whose
value ranges from – 8388608 and + 8388607, and it defines the position to be reached.
The 0 position coincides with the Home position or with the positionwhere an Initialize command
has been sent.
The Goto command is of the delayed execution type and it occupies 4 memory locations.

gs ** The ”velocity mode” Goto command allows to move the motor continuously, i. e. the motor is
accelerated to the programmed speed and then it slews indefinitely in the selected direction until a
”stop” command is received.

g+1↓

move the motor in the clockwise direction while:

g–↓

move the motor in the counterclockwise direction.
To stop the motor either the Z or the K command can be used.
The ”velocity mode” Goto command is of the delayed execution type and it occupies 4 memory
locations.

gsx ** An additional possibility offered by the Goto command, further improving the GS-C200S flexibility, is
the ”controlled velocity mode” operation.
This command is followed by the direction information and by the User input to be tested to stop the
operation.
This occurs when a ”zero” level is applied to the specified User input. For example the command
string:

gt1↓

causes the motor to ramp to the programmed slew speed and to move at this speed until the UI1
input is brought to ”zero”.
The ”controlledvelocity mode” Goto command is of the delayed execution type and it occupies 4
memory locations.

GS-C200 / GS-C200S

16/31

Command Description

Hs The Home command allows the GS-C to find the mechanical reference position.
The command is followed by the argument that specifies the searching direction of the End Of
Travel switch.
The argument can be omitted and in such a case the GS-C will execute the command:

H+↓

As soon as the GS-C receives the Home command, it moves the motor in the selected direction at
the Start-Stop speed (defined as the first instruction at the beginning of the program) until the End
Of Travel input is brought to ”zero”. When this condition is reached the direction is reversed and the
movement continues until the Home input reaches the ”zero” logical level. The position counter is
then cleared as well as the program contained in the RAM memory, and the controller is ready to
process a new command. In the GS-C200S, the position is also cleared, but the previous program,
present in the RAM is saved. When the Home and the End Of Travel inputs are tied toghether the
system reference point will correspond to the End Of Travel position.
To allow the system homing also in a stand alone application, an Home command is automatically
executed at start-up after the program recall. The Home direction is defined by the logic state of the
RxD input (pin 11) that when unconnected is equivalent to a H+ command, while when connected to
the +5V pin it forces a H– command. In a stand-alone environment, when the Home command is
not needed, it is mandatory to ground the End od Travel and the Home inputs (pins 32 and 30). The
Home command is of the immediateexecution type.

Ix The Initialize command forces the GS-C module to be selectively inizialized.
The command is followed by an argument whosevalue ranges between 1 and 3, and that specifies
where the action is addressed according to the following table:

1 = Position counter is cleared

2 = User outputs are cleared

3 = Position counter and User outputs are cleared.

The Initialize command is used to create a logic Home position for the GS-C200 if the 9999999
steps are not enough for the specific application. This function is better performed by the force
command in the GS-C200S, for which it is also possible to insert this command into the program.
The Initialize command is of the immediate execution type for the GS-C200, while it results of the
delayed/immediate execution type for the GS-C200S and it occupies 2 memory locations.

jv ** The jump command, executed only by the GS-C200S, allows the user to move inside the program
and to repeat indefinitely a portion of the program itself.
The argument specifies the memory location to be reached and it ranges from 0 (that is the program
starting point) to 118.
The jump command is of the delayed execution type and it occupies 2 memory locations.

jcv,y ** The conditional jump command, executed only by the GS-C200S module, allows the user to move
inside the program as a function of the logic state of the User inputs.
The argument specifies both the memory location to be reached (v), that must range between 0 and
118, and the User input condition to be matched (y) in order to execute the conditional jump.
The following example shows how powerful this command is:

jc0,40↓

jc1,52↓

jc2,74↓

When the first command is encountered the module tests the status of the User input pins and if
their value is 0 a jump to the memory location 40 is executed. If the condition is not met the jump is
not executed and the following instruction is examined, and so on.
The conditional jump command is of the delayed execution type and it occupies 2 memory
locations.

K The Kill command aborts the programexecution.
The program can be restarted just by issuing the Execute instruction which will start the sequence
from the first program instruction and not from the interrupt point; it is therefore advisable to always
send a Home instruction after a Kill instruction in order to allow the system to start from a known
position.
The Kill command is of the immediate execution type.

GS-C200 / GS-C200S

17/31

Command Description

Lo The Loop start command marks the memory location where the portion of a repeatedly executed
command sequence begins.
This command is normally used together with the Loop repetition number command.
The Loop start command is of the delayed execution type and it occupies 2 memory locations.

Lxxx The Loop repetition number command allows an instruction, a sequence or a whole program to
be repeated for the specified number of times.
The command must be followed by an argument ranging from 1 to 255, that specifies how many
times the portion of the program contained between the Loop start command and the Loop
repetition number has to be executed.
The sequence:

 L0↓
 •
 •
 •
 L10↓

forces the command sequence included between L0 and L10 to be repeated ten times.
This command in normally used togheter with the Loop start command. If the loop starting point is
not specified, the interpreter repeats the sequence starting from the beginning of the program.
The Loop repetition number command is of the delayed execution type and it occupies 2 memory
locations.

M The Memory save command allows the program currently stored in the RAM memory to be
permanently saved in the EEPROM.
The program can then be reloaded both automatically or under command. In the first case, it is
executed automatically at power on, while in the latter the X command must be issued.
The Memory save command is of the immediate execution type.

P * The Program enter command sets the GS-C200 in the programming mode and it allows a new
program to be entered in the memory.
The instruction doesn’t require any argument and it causes the cancellation of the program
contained in the RAM memory
The programming session is terminated by the Execute command. The Program enter command
is of the immediate execution type.

Po ** The Program enter command sets the GS-C200S in the programming mode and it allows a new
program to be entered in the memory. The instruction doesn’t require any argument and it causes
the cancellation of the program contained in the RAM memory.
The programming session is terminated either by the program exit or the Execute command.
The Program enter command is of the immediate execution type.

Px ** The Program exit command sets the GS-C200S in the execution mode and it allows the unit to
wait for a command. The instruction doesn’t require any argument. The Program exit command is
of the immediate execution type.

Q The Query command instructs the GS-C to send to the Host computer the program currently stored
in the RAM memory.
Every program instruction is separated by a carriage return (ASCII 13), and the program end is
evidenced by the transmission of a message”END” that is the sequence terminator and it must be
recognized by the Host. The instruction does not require any argument. The Query command is of
the immediate execution type.

GS-C200 / GS-C200S

18/31

Command Description

Rvvv The Ramp command allows the user to define the length of the acceleration and deceleration
ramps that are always identical.
The command is followed by an argument whosevalue ranges from 1 to 999 and it determines the
number of steps necessary to pass from the Start-Stop speed to Slew speed. The instruction:

R50↓

specifies an acceleration or deceleration ramp 50 steps long. When the number of steps to be
executed is lower than the length of the two ramps (acceleration and deceleration), the ramping is
reversed before the maximum speed is reached to guarantee the correctness of the final position.
More than one ramp length can be used during the program execution just by introducing an R
command in the proper sequence place.

R25↓
3000↓

 •
 •

R85↓
–800↓

 •

This program executes a 25 steps ramp length for the movements until the R85 command is
encountered; from that moment all the movements are executed with a 85 steps ramp length.
This feature allows the user to optimize the motion system to adapt for different friction and load
conditions. The Ramp command is of the delayed execution type and it occupies 4 memory
locations.

Svvv The Start-Stop command allows the user to choose the step rate at which the motion is started.
The command is always followed by an argument whose value ranges between 1 and 1000 and it
corresponds to a Start-Stop step rate of 10 to 10,000 steps/second (a by 10 multiplier is used).
The range normally used is from 1 to 50 corresponding to a 10 to 500 steps/second rate.
The command:

S30↓

indicates a 300 step/sec or 300Hz Start-Stop frequency.
A Start-Stop command must initiate any program to be executed in stand alone environment.
More than one Start-Stop rate can be used during the program execution just by introducing a new
Start-Stop command when needed, as shown in the following program sequence:

S20↓
T200↓

 •
 •

S35↓
 •

T300↓
 •

The Start-Stop command is of the delayed execution type and it occupies 4 memory locations.

Tvvv The Top-speed command allows the user to choose the motion system Slew speed.
The command is always followed by an argument whose value ranges between 1 and 1000 that
correspond to a Top-speed step rate of 10 to 10000 steps/second (a by 10 multiplier is used).
The range normally used is from 30 to 500, corresponding to a 300 to 5000 steps/second rate.
The command:

T300

indicates a 3000 steps/sec or 3kHz rate (equivalent to 900 turns/minute for a motor with 200
steps/turn).
More than one Top-speed rate can be used during the program execution just by introducing a new
Top-speed command in the proper sequence place as per the example reported in the Start-stop
speed command description.
The Top-speed command is of the delayed execution type and it occupies 4 memory locations.

GS-C200 / GS-C200S

19/31

Command Description

Ux The Until command allows the program currently stored in RAM memory to be continuously exe-
cuted until a specific USER input is brought to ”zero”.
The command is always followed by an argument whose value ranges between 1 and 3, and it
specifies the User input to be tested. The command:

U2↓

states that the program, once started, will be continuously executed as long as the User input UI2 is
at the logic level ”one”.
Just after User Input UI2 is set to ”zero”, the program processes the next command after U2. The
Until command is of the delayed execution type and it occupies 2 memory locations.

Vx The Verify command allows the Host to know the current absolute position of the motor versus the
Home position or the status of the USER inputs and outputs.
The instruction is always followed by an argument whose value, 1 or 2, specifies the type of
requested information. The request for the current absolute position is obtained by issuing the
instruction:

V1↓

the GC-C200 answer can be

1234567↓

while the GS-C200S answer can be:

+1234↓

The request of the USER outputs status is obtained by using the instruction:

V2↓

the GS-C answer can be:

25↓

that denotes the following Input/Output status:

The Verify command is of the immediate execution type.

X The eXchange command allows the user to transfer the program currently stored in the EEPROM
into the RAM.
This command is used either during the program debugging phase when the F.A.S.T. program is
utilized, or when the fast execution of a frequently used program is needed.
In this latter case the Host recalls the program from the EEPROM by simply issuing the following
command string:

E↓

X↓

The eXchange command is of the immediate execution type.

Wx The Wait-for command allows the program start or a portion of program execution to be
conditioned by the rising edge of an external signal applied to the a USER input. The command is
always followed by an argument whose value ranges between 1 and 3, and it specifies the User
input to be tested in order to conditions the next command execution. The instruction:

W2↓

states that the program execution is conditioned by the presence of a ”one” logic level at the User
Input UI2. The Wait-for command is of the delayed execution type and it occupies 2 memory locations.

UI1 = 0 UO1 = 1

UI2 = 1 UO2 = 0

UI3 = 0 UO1 = 1

2 5

GS-C200 / GS-C200S

Command Description

Z The Zero the speed command allows a smooth stop of the motion system.
When the GS-C receives this command it reduces the stepping rate to ”zero” through a deceleration
ramp and it stops the program execution. If there is no motion when activated, the program
execution is immediately stopped. By using this command it is possible to stop the motor still
maintaining trace of the system position.
The program can be subsequentely restarted through an E command.

±xxxxxx The incremental positioning command allows the user to perform a movement referenced to the
actual position. The command can be issued either with a + or – sign that defines the direction of
the motion, and it is followed by an argument ranging from 1 and 999999 that defines the number of
steps to be executed.
The Incremental position command can be mixed to the Goto absolute positioning command in a
program, and it is normally used in a subroutine.
The Incremental position command is of the delayed execution type and it occupies 4 memory
locations.

20/31

During the program execution, the GS-C accepts
only theF, Z and K commands. Any other command
sent to the GS-C during the program execution has
no effect, and the module will respond to the Host
Computer by sending the answer B (Busy).

The GS-C200S programming requires a specific
attention because, when a program includes a jump
command, it is mandatory to address the proper
memory position to correctly execute the sequence.

For this purpose it is mandatory to define the jump
memory location by adding, for each program in-
struction, the proper bytes length that is specified
in the command description. The program starts
from memory address 0.

THE PROGRAM STORAGEAREA

The GS-C contains two storage areas reserved to
the User. The first is the microprocessor Random
Access Memory from where the motion program is
executed, the second is an EEPROM where the
programs are saved. The EEPROM contains a
program or a command sequence programmed by
the user that can be transferred into the RAM
memory by using the X command.

The RAM contains either a program or a command
sequence sent by the Host computer or transferred
from the EEPROM. In any case the program that is
executed when an E or Goto command is issued.
is the one contained in the RAM.

If the program is sent by the Host, it is checked to
verify if the logical and physical correctness has
been respected and if the storage capability is not
exceeded. In case an error is detected, it is notified
to the Host through an appropriated error message.

The number of instructions that can be stored de-
pends on the type of instruction, and typically it
ranges between 30 and 60, for a total of 119 mem-
ory locations.

THE POWER SUPPLY
The GS-C module contains a high efficiency switch
mode power supply. It generates the various regu-
lated voltages required for the proper operation of
the internal logic and the communication port, start-
ing from an unregulated input voltage that can
range from 12 to 40 Volt. The module also features
a 5V output capable of delivering up to 100mA,
which can be used to supply external devices or the
logic port of a GS-D module. This output is pro-
tected against short circuit to ground. Two outputs
at ±12V are available with a current capacity of
10mA.

PROGRAM EXAMPLES
After the description of the communication protocol,
of the various commands and of the various mes-
sages, some simple programs examples are given
in the following.

Example 1

The required action is to run a motor at 1000
steps/sec. rate, with a start-stop rate of 100
steps/sec., and a ramp length of 50 steps. The
target position to be reached is the step 500000.

The operative sequence is the following:

1) Connect the GS-C200 to an Host Computer
equipped with the advanced Basic program.

2) Power-on the GS-C200.

3) Enter the DOS operating system and then run
the F.A.S.T. program (see the GS-C200PROG
datasheet).

4) Start the programming session by typing the
following command sequence:

F↓ Read the controller status.
AReady is answered by the GS-C.

I3↓ Clear the position counter and the
USER outputs.

GS-C200 / GS-C200S

21/31

P↓ Enter the programming mode

S10↓ Set the Start-stop rate to 100
steps/sec.

T100↓ Set the Slew speed rate to 1000
steps/sec.

R50↓ Set the Ramp length to 50 steps.

G500000↓ Goto the target position
E↓ End of the programming session.

The GS-Cstarts the program exe-
cution.

The G500000 command can be substituted by the
+500000 command. The program can also be
stored in the GS-C EEPROM by typing an M↓
command before the E↓ command.
Example 2
The program chosen for this example drills 5 equi-
distant holes on a metal bar. A GS-C and GS-D
motion system is used to control the vertical posi-
tion of the drill, while a second GS-C and GS-D
motion system is used for the proper bar loading
and positioning. To better clarify the operations to
be executed and to show the program simplicity, the
two command sequencesand the relative process
flowcharts are also reported.

The programming session is entered following the
points 1 to 4 of the previous example. The first
command sequence, used to correctly position the
metal bar, is the following:

S10↓ Set the Start-stop speed to100 steps/sec

T100↓ Set the Slew speed to 1000 steps/sec
R40↓ Set the ramp length to 40 steps

W1↓ Wait for the external Start

+250↓ Reach the first drilling position

L0↓ Loop starting point

A2↓ Activate the unit 2 forcing UO2 = 1

D1↓ Wait 0.1 sec

C2↓ Then reset UO2

W2↓ Wait until drilling completion

+120↓ Reach the drilling position 120 steps CW

L4↓ Repeat the loop 4 times

A2↓ Activate the unit 2 forcing UO2 = 1

C2↓ Then reset UO2

W2↓ Wait until drilling completion

+250↓ Reach the cutting position 250 steps CW

A1↓ Activate the cutting blade forcing UO1 = 1

D5↓ Wait 0.5 sec

C1↓ Clear cutting command resetting UO1

The second command sequence, used to drill the
metal bar, is the following:

S15↓ Set the Start-stop rate to 150 steps/sec

T200↓ Set the Slew rate to 200 steps/sec
R25↓ Set the Ramp length to 25 steps

W1↓ Wait for start
W2↓ Wait for a drilling command from unit 1

A2↓ Activate the drill motor forcing UO2 = 1

+150↓ Pull down the drill
D1↓ Wait 0.1 sec

G0↓ Lift the drill up

C2↓ Stop the drill motor

A1↓ Notify drilling completion to unit 1 forcing
UO1 = 1

D1↓ Wait 0.1 sec

C1↓ Then clear UO1
The combination of these two programs operates
only on one bar, then the two GS-C become avail-
able again to the Host both for the repetition of the
program or for the entering of a new command
sequence.

If the operation has to be repeated till the exhaus-
tion of bars, it will be sufficient to add, at the
beginning of the first sequence, the command;

U3↓ execute until UI3 = 1

which allows the drilling cycle to continue until the
controller which takes care of the bar positioning, is
notified to stop the operations.

This notification is accomplished by clearing the
User input UI3 of GS-C devoted to the positioning.

To demonstrate the efficiency of the GS-C program-
ming language it is worth to mention that the pro-
gram for the bar positioning uses 50 memory
locations, while the program for the drill control
needs only 36memory locations. The two programs
can be contained in the GS-C memory thus making
the system simpler and easier to maintain.

GS-C200 / GS-C200S

22/31

Figure 8. Automatic Drilling And Positioning System Block Diagram.

GS-C200 / GS-C200S

23/31

Figure 9. Programs Flow-charts.

GS-C200 / GS-C200S

24/31

Figure 10. Alternative Sequencer-Driver driving.

THE SEQUENCER-DRIVER INTERFACE
The GS-C is a general purpose stepper motor
controller capable to drive any type of motor, i.e.
two, three and five phases motors, by just interfac-
ing it to the right Sequencer-Driver.
Sometime the available Sequencer-Driver requires
two separate Clock lines, one for each direction,
and this requirement is easily fulfilled by the circuit
of figure 10.

PHASE CURRENT PROGRAMMING
As already explained, the possibility to modify the
phase current of a stepper motor according to
different operating conditions, gives substantial im-
provements in term of efficiency andsystem reliabil-
ity because it minimizes the resonance effects and
the dissipated power.

The phase current programming can be imple-
mented in various modes, either via a software
command by changing the status of the USER
output lines, or by hardware. Of course, the Se-
quencer-Driver must have the current programming
capability. An example of a hardware solution, im-
plemented around a GS-C and GS-D200/200S
module, is shown in fig.11.

The application utilizes the two outputs:

MOV Movement in execution output
(pin 22)

RAMP Ramp in execution (pin 23)

of the GS-C module and the

Ioset Current programming input (pin9)

of the GS-D module.

The phase current has the shape shown in fig.6, i.e.
it is minimized when the motor is stopped, it has its
maximum value during the acceleration/decelera-
tion ramps, and an intermediate value during the
slew phase.

Figure 11. Phase Current Programming of the GS-D200/200S

GS-C200 AND GS-C200S APPLICATION

GS-C200 / GS-C200S

25/31

Let’s assume the following values are needed:

Irest = 0.25A

Iramp = 1.5A

Islew = 0.5A

The logic condition of the RAMP and MOV outputs
in the various states is:

During the ramping phase both pins 22 and
23 are high: Tr1 is ON and Tr2 is OFF.

During the slew phase pin 23 is low and pin
22 is high: Tr1 and Tr2 are OFF.

In stall condition Tr1 is OFF and Tr2 is ON.

The value of R1, R2, R3 is determined as follows
(for further details please see the GS-D200/200S
data sheet). The value of R3, that fixes the Islew =
= 0.5A (Tr1 and Tr2 OFF), is easily calculated by
referring to the GS-D data sheet:

R3 =
Islew

1 − 0.933 ⋅ Islew

R3 = 937 Ω

The value of the R2 resistor, when paralleled to R3,
fixes the value of Irest = 0.25A (Tr1 OFF, Tr2 ON).

R2 // R3 =
Irest

1 − 0.933⋅ Irest

R2 // R3 = 326Ω

R2 = 500Ω

The value of R1, that depends on the value of R3
and the resistors contained in the GS-D200/200S
module, fixes Iramp = 1.5A (Tr1 ON, Tr2 OFF).

The values of the internal resistors are:

1.2kΩ to ground and 10kΩ to VSS for the
GS-D200

750Ω to ground and 10kΩ to VSS for the
GS-D200S

Assuming the GS-D200S is used, after some
straightforward calculations, it results:

R1 = 4245Ω
of course all these values do not take into account the
transistors saturation losses and in some cases, when
a veryprecise current is needed, a trimming isrequired.

GALVANIC ISOLATION
The industrial environment, where normally a step-
per motor and its driving system operate, is very
noisy and for this reason it is often advisable to have
a galvanic isolation between the Host computer and
the motion system. Because the connection bet-
ween the Host and the GS-C module requires only
three wires (TxD, RxD and ground), the galvanic
isolation can be implemented as per fig. 12 that
uses only two optocouplers and two resistors, one
protection diode and a +12 or +15V source.

A +12 or +15V source is normally available on the
pin 6 and 8 of any RS232 connector. The source
impedance is quite high (in the range of 220 to
600Ω) and for this reason the value of R2 must be
greater than 1000Ω to avoid the source overload.

Figure 12. GS-C200 to Host galvanic isolation.

GS-C200 / GS-C200S

26/31

COMPLEX MOVEMENTS SYNCHRONIZATION

In many applications the synchronization of several
movements is quite often required and the GS-C
allows this function to be easily implemented either
by using the Step Enable input or the User in-
put/output pins. In fig.13A and fig.13B the block
diagrams relative to the two solutions are reported.

The solution A is the simplest but it has some
limitations, i.e. it can be used only when the whole
system has to move synchronously. The solution B
is more complex but also more flexible and it allows
the program to control where and when the syn-
chronization must be implemented.

THE START-STOP SPEED (S command)
SELECTION
A typical Start-Stop curve (as shown on Fig. 14),
shows that for a given driving voltage and phase
current, the highest drive frequency allowed at the
start (Pull-In Rate) is much lower than the one
allowed for the stop (Pull-Out Rate) and that both
are influenced by the load value. Of course the
higher the current level the higher is the available
torque, and the system can be started at a greater
speed. Asignificant increase of the start-stop speed
is obtained when the supply voltage is increased
but in both cases the problem related to the me-
chanical resonance must be considered. It is advis-
able to maintain a significant safety margin against
the system torque limit in order to avoid any prob-
lem due to the friction variation. A commonly ac-
cepted rule fixes the Start-Stop speed equal to the
50% of the maximum theoretical value reported on
the motor data sheet; this takes into account fric-
tion, load inertia variations as well as motor pa-
rameter differences and power supply fluctuations.

Figure 13. Complex Movements Synchronization

Figure 14. Start-Stop Characteristic.

SLEW SPEED (T command) SELECTION
The Slew speed is roughly determined by the load
and it can be evaluated by using the following
relation:

F ⋅ L

6000 ⋅ t
=

T ⋅ N
10

where

F = Strength in Pounds
T = Torque in Ounce/Inch
L = Length in Inches
N = Speed in turn/min.
t = Time in seconds

B

A

GS-C200 / GS-C200S

27/31

Figure 15. Torque/Frequency Characteristic.

The Slew speed is also limited by the motor electri-
cal and physical characteristics, as shown on Fig.
15 where the behaviour of the minimum available
torque versus the driving frequency is reported.
It can be noted that the torque decreases almost
linearly starting from a certain frequency, and this
frequency depends on the motor windings imped-
ance and the rotor inertia.

Figure 16. The GS-C200 Acceleration Ramp.

RAMP LENGHT (R command) SELECTION

The acceleration and deceleration ramps are not
likely to be calculated and they shall be optimized
during the system debugging and testing phase.
The testing may start with very conservative ramp
gradients, i.e. very long ramps, that will be gradually
shortened until the first positioning error isdetected.

The acceleration and deceleration ramps gener-
ated by the GS-C have the trend shown in fig. 16.

It is important to note that, when the number of
steps to be executed does not allow to reach the
Slew speed, the GS-C moves to the target position
performing a partial acceleration ramp linked to a
shortened deceleration ramp. This represents the
minimum time consuming way to reach the speci-
fied position.

CLOSED LOOP OPERATION

The stepper motor is a device normally driven in an
open loop mode and there is no direct control
between the cause and the effect. In adverse con-
ditions an issued step may not be performed me-
chanically because the driving conditions do not
match the required torque and speed. In addition,
the resonance phenomenon, common to all the
stepper motors, can also affect the correct position-
ing.

In some particular applications, when the load has
a very large spread of values and the torque margin
is limited, it is sometimes necessary to implement
an external electronic circuitry to guarantee the
correct system positioning

To this purpose three different methods can be
adopted:

a) Digital encoding of the absolute position.

b) Recognition that a step has been executed by
the usage of a slotted disk, two optocouplers
and some logic.

c) The same as above by the usage of velocity coils
and some logic.

The first solution is very expensive and the digital-
ized position value must be read by the computer
through a parallel port by using a specifically written
program. A further limitation arises from the fact
that every shaft encoder provides just the informa-
tion relative to the position but it does not take care
if more than one turn has been performed by the
motor shaft, and an external logic is also required
to detect and save this condition.

The second solution is less expensive but it requires
a tedious trimming of the mechanical positioning of
the optical sources and detectors to be effective.
The major drawback of this solution is its sensitivity
to dust, and the whole position sensing system
must be contained in a dust free box.

The last solution is probably the best under every
point of view because it does not require any me-
chanical positioning adjustement that has been
previously made by the motor manufacturer; more-
over it is dust insensitive beeing based on flux
variation across an air gap and finally no mechani-
cal hardware must be added to the system.

GS-C200 / GS-C200S

28/31

In fig. 17 the block diagram of a closed loop system
is reported.
If the step execution is recognized by a movement
detector that uses either a slotted disk or the motor
velocity coils, two logic signals (x,y) like those re-
ported in fig. 18 are available.

Figure 17. Closed Loop System.

Figure 18. Signal Output of the Movement Detector.

Figure 19. Suggested Logic to Close the Loop.

It is possible, by using these two signals as inputs
(x, y) of the very simple and inexpensive logic circuit
reported in fig. 19, to detect the direction of rotation
and the step execution. The output of the circuit is
then used to condition the step enable input of the
GS-C module allowing the step clock pulse to be
issued only if the previous step has been executed.

GS-C200 / GS-C200S

29/31

Figure 20. Typical Single Step Response.

ELECTRONIC DAMPING
Any stepper motor system when driven at very low
stepping rates, has an oscillatory step response as
shown in fig. 20.

This oscillatory behaviour is due to fact that the
motor reaches the stall position after each excita-
tion change through an acceleration and a succes-
sive deceleration. This causes the motor shaft to
rotate with jumps instead of uniform motion.

Another consequence of this oscillatory single step
response is that the long system settling time can
cause mechanical stresses to the driven load.
A second tedious effect is the enhancement of the
rotor oscillation when the driving step rate ap-
proaches the natural resonance frequency of the
motor. If the step rate is lower than this frequency,
the motor is behind the equilibrium position and the
velocity is near to zero when the next excitation
change occurs.

When the step rate is increased to a value close to
the natural resonance frequency, an increase of the
oscillations also occurs, and as soon as the oscilla-
tion amplitude exceeds the step amplitude, the
corrispondence between the rotor position and the
excitation sequence is lost and any subsequent
rotor movement is erratic as shown in fig. 21.
A simple method to reduce the oscillations problem
is to use the half step driving, but this also limits the
maximum speed of the system.
When this limitation is not acceptable, other two
basic techniques may be adopted to damp the
system oscillations:
1. A mechanical damper
2. An electronic damping circuit.

Figure 21. Slow Speed Step Response.

GS-C200 / GS-C200S

30/31

The mechanical damping is obtained by the intro-
duction of a viscous friction between the motor shaft
and the load. The friction system must be elastic
and it will recover the original relative angular shaft
alignement to assure the correct final positioning.

The response time of the damping system must be
quite fast, and it must be active just for rapid speed
changes otherwise a severe limitation in the maxi-
mum speed will occur.

The electronic damping is obtained by the proper
driving of the motor phases that are switched on
and off in such a way to generated anegative torque
to decelerate and stop the rotor smoothly. Let’s
assume the motor is moving from position 1 to the
detent position 2, i.e. the phase A is switched OFF
and the phase B is switched ON.

The rotor starts moving at t0 instant (see fig. 22),
and after a time t1, the phase driving is reversed
(phase A ON and phase B OFF) generating a
braking torque that will allow the rotor to approach
the final detent position at a very limited speed.
Before the zero speed is reached, (t2) it is neces-
sary to switch back the phase driving to its original
condition in order to stop the system at its target
position.

Leaving the phase driving unchanged will cause the
motor to stop a step earlier of the correct position
because the motor, after the zero speed is reached,
will accelerate in the reverse direction returning to
the starting position.
The deceleration time as well the damping level is
easily adjusted by changing the timing i.e. t1 and t2,
but it can be quite complicate to compensate a
system where large load variation occurs.

Figure 22. Single Step Response with Damping.

In fact, an heavy load variation causes a large
variation of the single step response time of the
system, and it could be that asystem compensated
in a no load condition will stop one step behind
when fully loaded, while another compensated at
full load will probably exibits erratic positioning at
no load.
If the loadcondition isknown it is possible to introduce
a compensation circuit that can be conveniently
driven by one or more User outputs. Fig. 22 shows
the motor response to a single step pulse with elec-
tronic damping and the relative phase driving. This
phase switching reversal method is also known as
the bang-bang damping method, and it can be easily
implemented by using the GS-C module.
The RAMP and MOV signals allow the user to
detect when the last pulses are issued, and to
generate, by a simple logic circuit, the delayed
phase reversal commands necessary to implement
the sequence of fig. 23.
The circuit uses a last pulse detector (G1), and on
the falling edge of the Asignal (synchronous to the
last step command), a timing generator is triggered.
The various delays can be trimmed to the values
requested by the operating conditions, and the
pulse sequence reported in figure 23 (A, B and C
signals) in generated.
The Aand B signals are used to reverse the motion
direction (G2) while the C signal steps twice the
motor (backward and forward).

steps

GS-C200 / GS-C200S

Figure 23. Practical Implementation of the Phase Reversal Damping with the GS-C Module.

31/31

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong- Italy - Japan - Korea - Malaysia - Malta - Morocco- The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

GS-C200 / GS-C200S

