

ICL7611, ICL7612

ICL76XX Series Low Power CMOS Operational Amplifiers

March 1993

Features

- Wide Operating Voltage Range±1V to ±8V
- Programmable Power Consumption Low as 20μW
- Input Current Lower Than BIFIETs.....1pA Typ
- Output Voltage SwingV+ and V-
- Input Common Mode Voltage Range Greater Than Supply Rails (ICL7612)

Applications

- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

Description

The ICL761X/762X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1V$ to $\pm 8V,$ and may be operated from a single Lithium cell.

A unique quiescent current programming pin allows setting of standby current to 1mA, 100μ A, or 10μ A, with no external components. This results in power consumption as low as 20μ W. The output swing ranges to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1pA) input current, input noise current of $0.01 \text{pA}/\sqrt{\text{Hz}}$, and $10^{12}\Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of 1.6V/ μ s, and unity gain bandwidth of 1MHz at I_Q = 1mA.

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Pinouts (See Ordering Information on Next Page)

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7611ACPA	0°C to +70°C	8 Lead Plastic DIP - A Grade
ICL7611BCPA	0°C to +70°C	8 Lead Plastic DIP - B Grade
ICL7611DCPA	0°C to +70°C	8 Lead Plastic DIP - D Grade
ICL7611ACTV	0°C to +70°C	8 Pin TO-99 Metal Can - A Grade
ICL7611BCTV	0°C to +70°C	8 Pin TO-99 Metal Can - B Grade
ICL7611DCTV	0°C to +70°C	8 Pin TO-99 Metal Can - D Grade
ICL7611AMTV	-55°C to +125°C	8 Pin TO-99 Metal Can - A Grade
ICL7611BMTV	-55°C to +125°C	8 Pin TO-99 Metal Can - B Grade
ICL7611DMTV	-55°C to +125°C	8 Pin TO-99 Metal Can - D Grade
ICL7611DCBA	0°C to +70°C	8 Lead SOIC - D Grade
ICL7611DCBA-T	0°C to +70°C	8 Lead SOIC - D Grade - Tape and Reel
ICL7612ACPA	0°C to +70°C	8 Lead Plastic DIP - A Grade
ICL7612BCPA	0°C to +70°C	8 Lead Plastic DIP - B Grade
ICL7612DCPA	0°C to +70°C	8 Lead Plastic DIP - D Grade
ICL7612ACTV	0°C to +70°C	8 Lead TO-99 Metal Can - A Grade
ICL7612BCTV	0°C to +70°C	8 Lead TO-99 Metal Can - B Grade
ICL7612DCTV	0°C to +70°C	8 Lead TO-99 Metal Can - D Grade
ICL7612AMTV	-55°C to +125°C	8 Lead TO-99 Metal Can - A Grade
ICL7612BMTV	-55°C to +125°C	8 Lead TO-99 Metal Can - B Grade
ICL7612DMTV	-55°C to +125°C	8 Lead TO-99 Metal Can - D Grade
ICL7612DCBA	0°C to +70°C	8 Lead SOIC - D Grade
ICL7612DCBA-T	0°C to +70°C	8 Lead SOIC - D Grade - Tape and Reel

Absolute Maximum Ratings

Supply Voltage V+ to V-18VOperatingInput Voltage.V- -0.3 to V+ +0.3VICL76XDifferential Input Voltage (Note 1)[(V+ +0.3) - (V- -0.3)]VICL76XDuration of Output Short Circuit (Note 2)UnlimitedStorage TePower DissipationAt $T_A = +25^{\circ}C$ 250mWAbove $T_A = +25^{\circ}C$ Derate Linearly 2mW/°CJunction Temperature.+175°C

Operating Conditions

Operating Temperature Range

ICL76XXM	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$
ICL76XXC	$\dots 0^{\circ}C \le T_A \le +70^{\circ}C$
Storage Temperature Range	$\text{-}65^oC \leq T_A \leq \text{+}150^oC$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{SUPPLY} = \pm 5.0V$, $T_A = +25^{\circ}C$, Unless Otherwise Specified

	SYMBOL			ICL7611A, ICL7612A			CL7611		10 10				
PARAMETERS			TEST NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}	$R_{S} \leq 100 k\Omega$	-	-	2	-	-	5	-	-	15	mV	
		$T_{MIN} \le T_A \le T_A$	T _{MAX}	-	-	3	-	-	7	-	-	20	mV
Temperature Coefficient of V _{OS}	$\Delta V_{OS} / \Delta T$	$R_S \le 100 k\Omega$		-	10	-	-	15	-	-	25	-	μV/ºC
Input Offset Current I _{OS}		$T_{A} = +25^{\circ}C$		-	0.5	30	-	0.5	30	-	0.5	30	pА
		0°C to +70°C		-	-	300	-	-	300	-	-	300	pА
		-55°C to +125°C		-	-	800	-		800	-		800	pА
Input Bias Current	I _{BIAS}	$T_A = +25^{\circ}C$		-	1.0	50	-	1.0	50	-	1.0	50	pА
		0°C to +70°C		-	-	400	-	-	400	-	-	400	pА
		-55°C to +125°C		-	-	4000	-	-	4000	-	-	4000	pА
Common Mode Voltage Range (Except ICL7612)	V _{CMR}	$I_Q = 10 \mu A$	I _Q = 10μA		-	-	±4.4	-	-	±4.4	-	-	V
		I _Q = 100μA		±4.2	-	-	±4.2	-	-	±4.2	-	-	V
		I _Q = 1mA		±3.7	-	-	±3.7	-	-	±3.7	-	-	V
	V _{CMR}	$I_Q = 10\mu A$		±5.3	-	-	±5.3	-	-	±5.3	-	-	V
Mode Voltage Range (ICL7612 Only)		I _Q = 100μΑ			-	-		-	-	+5.3, -5.1	-	-	V
		-	+5.3, -4.5	-	-	V							
Output Voltage Swing	V _{OUT}		$T_{A} = +25^{\circ}C$	±4.9	-	-	±4.9	-	-	±4.9	-	-	V
		$R_L = 1M\Omega$	0°C to 70°C	±4.8	-	-	±4.8	-	-	±4.8	-	-	V
			-55°C to +125°C	±4.7	-	-	±4.7	-	-	±4.7	-	-	V
		$I_{Q} = 100 \mu A$,	$T_A = +25^{\circ}C$	±4.9	-	-	±4.9	-	-	±4.9	-	-	V
		$R_L = 100 k\Omega$	0°C to 70°C	±4.8	-	-	±4.8	-	-	±4.8	-	-	V
			-55°C to +125°C	±4.5	-	-	±4.5	-	-	±4.5	-	-	V
		$I_Q = 1mA$,	$T_A = +25^{\circ}C$	±4.5	-	-	±4.5	-	-	±4.5	-	-	V
		$R_L = 10k\Omega$	0°C to 70°C	±4.3	-	-	±4.3	-	-	±4.3	-	-	V
			-55°C to +125°C	±4.0	-	-	±4.0	-	-	±4.0	-	-	V

			ICL7611A, ICL7612A				CL7611 CL7612		ICL7611D, ICL7612D				
PARAMETERS	SYMBOL		NDITIONS	MIN	TYP	МАХ	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Large Signal Voltage	A _{VOL}	$V_0 = \pm 4.0 V_0$	$T_{A} = +25^{\circ}C$	86	104	-	80	104	-	80	104	-	dB
Gain		R _L = 1MΩ, I _O = 10μA	0°C to 70°C	80	-	-	75	-	-	75	-	-	dB
		.Q .ops.	-55°C to +125°C	74	-	-	68	-	-	68	-	-	dB
		$V_0 = \pm 4.0 V,$	$T_A = +25^{\circ}C$	86	102	-	80	102	-	80	102	-	dB
		$R_L = 100 kΩ,$ $I_Q = 100 μA$	0°C to 70°C	80	-	-	75	-	-	75	-	-	dB
			-55°C to +125°C	74	-	-	68	-	-	68	-	-	dB
		$V_{O} = \pm 4.0 V$,	$T_A = +25^{\circ}C$	80	83	-	76	83	-	76	83	-	dB
		$R_L = 10k\Omega$, $I_O = 1mA$	0°C to 70°C	76	-	-	72	-	-	72	-	-	dB
		.u =	-55°C to +125°C	72	-	-	68	-	-	68	-	-	dB
Unity Gain Bandwidth	GBW	I _Q = 10μA		-	0.044	-	-	0.044	-	-	0.044	-	MHz
		I _Q = 100μA		-	0.48	-	-	0.48	-	-	0.48	-	MHz
		$I_Q = 1mA$		-	1.4	-	-	1.4	-	-	1.4	-	MHz
Input Resistance	R _{IN}			-	10 ¹²	-	-	10 ¹²	-	-	10 ¹²	-	Ω
Common Mode CMRR		$R_S \leq 100 k\Omega, I_Q = 10 \mu A$		76	96	-	70	96	-	70	96	-	dB
Rejection Ratio		$R_S \le 100 k\Omega$,	$R_S \leq 100 k\Omega, \ I_Q = 100 \mu A$		91	-	70	91	-	70	91	-	dB
		$R_S \le 100 k\Omega$,	$I_Q = 1mA$	66	87	-	60	87	-	60	87	-	dB
Power Supply Rejection Ratio V _{SUPPLY} = ±8V to ±2V	PSRR	$R_S \le 100 k\Omega$,	$I_Q = 10\mu A$	80	94	-	80	94	-	80	94	-	dB
		$R_S \le 100 k\Omega$,	$I_Q = 100 \mu A$	80	86	-	80	86	-	80	86	-	dB
		$R_S \le 100 k\Omega$,	$I_Q = 1mA$	70	77	-	70	77	- 80 94 - 60 - 80 86 - 60 - 70 77 - 60 - 70 77 - 60	dB			
Input Referred Noise Voltage	e _N	$R_S = 100\Omega$, f = 1kHz		-	100	-	-	100	-	-	100	-	nV/√Hz
Input Referred Noise Current	i _N	R _S = 100Ω, 1	-	0.01	-	-	0.01	-	-	0.01	-	pA/√Hz	
Supply Current	I _{SUPPLY}	No Signal, No Load	I _Q SET = +5V, Low Bias	-	0.01	0.02	-	0.01	0.02	-	0.01	0.02	mA
			I _Q SET = 0V, Medium Bias	-	0.1	0.25	-	0.1	0.25	-	0.1	0.25	mA
			I _Q SET = -5V , High Bias	-	1.0	2.5	-	1.0	2.5	-	1.0	- GB	mA
Channel Separation	V _{O1} /V _{O2}	A _V = 100		-	120	-	-	120	-	-	120	-	dB
Slew Rate	SR	$\begin{array}{l} A_V = 1, \\ C_L = 100 p F \end{array}$	$I_Q = 10\mu A,$ $R_L = 1M\Omega$	-	0.016	-	-	0.016	-	-	0.016	-	V/µs
		$V_{IN} = 8V_{P-P}$	$I_Q = 100\mu A,$ $R_L = 100k\Omega$	•	0.16	-	-	0.16	-	-	0.16	-	V/µs
			$I_Q = 1mA,$ $R_L = 10k\Omega$	-	1.6	-	-	1.6	-	-	1.6	-	V/µs
Rise Time	t _R	$V_{IN} = 50 \text{mV},$ $C_L = 100 \text{pF}$		•	20	-	-	20	-	-	20	-	μs
			$I_Q = 100\mu A,$ $R_L = 100k\Omega$	-	2	-	-	2	-	-	2	-	μs
			$I_Q = 1mA,$ $R_L = 10k\Omega$	-	0.9	-	-	0.9	-	-	0.9	-	μs

		TEST			ICL7611A, ICL7612A			ICL7611B, ICL7612B			ICL7611D, ICL7612D		
PARAMETERS SYMBOL		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Overshoot Factor	OS	$V_{IN} = 50 \text{mV},$ $C_L = 100 \text{pF}$	$I_Q = 10\mu A,$ $R_L = 1M\Omega$	-	5	-	-	5	-	-	5	-	%
			$I_Q = 100$ μA, R _L = 100kΩ	-	10	-	-	10	-	-	10	-	%
			$I_Q = 1mA,$ $R_L = 10k\Omega$	-	40	-	-	40	-	-	40	-	%

NOTES:

1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.

2. The outputs may be shorted to ground or to either supply, for $V_{SUPP} \le 10V$. Care must be taken to insure that the dissipation rating is not exceeded.

		TEST		ICL761	1A, ICL7	′612A	ICL761			
PARAMETERS	SYMBOL		NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}	$R_S \leq 100 k\Omega$	$T_A = +25^{\circ}C$	-	-	2	-	-	5	mV
			$T_{MIN} \leq T_A \leq T_{MAX}$	-	-	3	-	-	7	mV
Temperature Coefficient of V_{OS}	$\Delta V_{OS} / \Delta T$	$R_{S} \leq 100 k \Omega$		-	10	-	-	15	-	μV/ºC
Input Offset Current	I _{OS}	$T_A = +25^{\circ}C$		-	0.5	30	-	0.5	30	pА
		0°C to +70°C	0	-	-	300	-	-	300	pА
Input Bias Current	I _{BIAS}	$T_A = +25^{\circ}C$		-	1.0	50	-	1.0	50	pА
		0°C to +70°C	0	-	-	500	-	-	500	pА
Common Mode Voltage Range (Except ICL7612)	V _{CMR}			±0.6	-	-	±0.6	-	-	V
Extended Common Mode Voltage Range (ICL7612 Only)	V _{CMR}			+0.6 to -1.1	-	-	+0.6 to -1.1	-	-	V
Output Voltage Swing	V _{OUT}	$R_L = 1M\Omega$	$T_A = +25^{\circ}C$	±0.98	-	-	±0.98	-	-	V
			0°C to +70°C	±0.96	-	-	±0.96	-	-	V
Large Signal Voltage Gain	A _{VOL}	$V_0 = \pm 0.1 V,$ $R_L = 1 M \Omega$	$T_A = +25^{\circ}C$	-	90	-	-	90	-	dB
			0°C to +70°C	-	80	-	-	80	-	dB
Unity Gain Bandwidth	GBW			-	0.044	-	-	0.044	-	MHz
Input Resistance	R _{IN}			-	10 ¹²	-	-	10 ¹²	-	Ω
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 100 k \Omega$		-	80	-	-	80	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 100 k \Omega$		-	80	-	-	80	-	dB
Input Referred Noise Voltage	e _N	$R_{S} = 100\Omega, 1$	f = 1kHz	-	100	-	-	100	-	nV/√Hz
Input Referred Noise Current	i _N	R _S = 100Ω,	f = 1kHz	-	0.01	-	-	0.01	-	pA/√Hz
Supply Current	I _{SUPPLY}	No Signal, N	lo Load	-	6	15	-	6	15	μΑ
Slew Rate	SR	$A_V = 1, C_L = 100 \text{pF},$ $V_{\text{IN}} = 0.2 V_{\text{P-P}}, R_L = 1 \text{M}\Omega$		-	0.016	-	-	0.016	-	V/µs
Rise Time	t _R	$V_{IN} = 50 \text{mV}, C_{L} = 100 \text{pF}$ $R_{L} = 1 \text{M}\Omega$		-	20	-	-	20	-	μs
Overshoot Factor	OS	$V_{IN} = 50 mV,$ $R_L = 1 M\Omega$	C _L = 100pF,	-	5	-	-	5	-	%

Electrical Specifications $V_{SUPPLY} = \pm 1.0V$, $I_Q = 10\mu A$, $T_A = +25^{\circ}C$, Unless Otherwise Specified

Detailed Description

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2mA to prevent latchup.

Choosing the Proper I_Q

The ICL7611 and ICL7612 have a similar I_Q set-up scheme, which allows the amplifier to be set to nominal quiescent currents of 10µA, 100µA or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external I_Q control terminal, permitting user selection of quiescent current. To set the I_Q connect the I_Q terminal as follows:

 $I_Q = 10\mu A - I_Q \text{ pin to V+}$

 $I_Q = 100\mu A - I_Q$ pin to ground. If this is not possible, any voltage from V+ - 0.8 to V- +0.8 can be used.

 $I_{O} = 1 \text{mA} - I_{O} \text{ pin to V}$ -

NOTE: The output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, I_{Ω} of 1mA should be selected.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_Q settings. This allows output swings to almost the supply rails for output loads of $1M\Omega$, $100k\Omega$, and $10k\Omega$, using the output stage in a highly linear class A mode. In this mode, cross-over distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

Input Offset Nulling

Offset nulling may be achieved by connecting a 25K pot between the BAL terminals with the wiper connected to V+. At quiescent currents of 1mA the nulling range provided is adequate for all V_{OS} selections; however with $I_Q = 10\mu$ A and 100 μ A, nulling may not be possible with higher values of V_{OS}.

Frequency Compensation

The ICL7611 and ICL7612 are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF.

Extended Common Mode Input Range

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1V for applications where $V_{SUPP} \ge \pm 1.5V$. For those applications where $V_{SUPP} \le \pm 1.5V$ the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1V in the negative direction (e.g. for $V_{SUPP} = \pm 1.0V$, the input CMVR would be +0.6V to -1.1V).

Operation At V_{SUPP} = ±1.0V

Operation at V_{SUPP} = $\pm 1.0V$ is guaranteed at I_Q = 10µA for A and B grades only.

Output swings to within a few millivolts of the supply rails are achievable for $R_L \geq 1M\Omega$. Guaranteed input CMVR is $\pm 0.6V$ minimum and typically +0.9V to -0.7V at V_{SUPP} = $\pm 1.0V$. For applications where greater common mode range is desirable, refer to the description of ICL7612 above.

Applications

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

Note that in no case is ${\sf I}_{\sf Q}$ shown. The value of ${\sf I}_{\sf Q}$ must be chosen by the designer with regard to frequency response and power dissipation.

FIGURE 19. SIMPLE FOLLOWER*

FIGURE 20. LEVEL DETECTOR*

* Low leakage currents allow integration times up to several hours.

FIGURE 21. PHOTOCURRENT INTEGRATOR

Since the output range swings exactly from rail to rail, frequency and

duty cycle are virtually independent of power supply variations.

FIGURE 22. PRECISE TRIANGLE/SQUARE WAVE GENERATOR

FIGURE 23. AVERAGING AC TO DC CONVERTER FOR A/D CON-VERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117

FIGURE 24. BURN-IN AND LIFE TEST CIRCUIT

FIGURE 25. V_{OS} NULL CIRCUIT

The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. $f_c = 10Hz$, $A_{VCL} = 4$, Passband ripple = 0.1dB.

*Note that small capacitors (25 - 50pF) may be needed for stability in some cases.

FIGURE 26. FIFTH ORDER CHEBYSHEV MULTIPLE FEEDBACK LOW PASS FILTER