

DATA COMMUNICATIONS

9-Line SCSI Terminator – 35MHz Channel Bandwidth

The 9-channel IMP5111/5112 SCSI terminator is part of IMP's family of high-performance SCSI terminators that deliver true UltraSCSI performance. The BiCMOS design offers superior performance over first generation linear regulator/resistor based terminators.

IMP's new architecture employs high-speed adaptive elements for each channel, thereby providing the fastest response possible - typically 35MHz, which is 100 times faster than the older linear regulator terminator approach. The bandwidth of terminators based on the older regulator/resistor terminator architecture is limited to 500kHz since a large output stabilization capacitor is required. The IMP architecture eliminates the external output compensation capacitor and the need for transient output capacitors while maintaining pin compatibility with first generation designs. Reduced component count is inherent with the IMP5111/5112.

The IMP5111/5112 architecture tolerates marginal system designs. A key improvement offered by the IMP5111/5112 lies in its ability to insure reliable, error-free communications even in systems which do not adhere to recommended SCSI hardware design guidelines, such as improper cable lengths and impedance. Frequently, this situation is not controlled by the peripheral or host designer.

For portable and configurable peripherals, the IMP5111/5112 can be placed in a sleep mode with a disconnect signal. Quiescent current is less than 275μ A when disabled. When disabled, the outputs are in a high impedance state with output capacitance less than 3pF.

Key Features

- Ultra-Fast response for Fast-20 SCSI applications
- ♦ 35MHz channel bandwidth
- ♦ 3.3V operation
- Less than 3pF output capacitance
- Sleep-mode current less than 275µA
- Thermally self limiting
- No external compensation capacitors
- Implements 8-bit or 16-bit (wide) applications
- Compatible with active negation drivers (60mA/channel)
- Compatible with passive and active terminations
- Approved for use with SCSI 1, 2, 3 and UltraSCSI
- Hot swap compatible
- Pin-for-pin compatible with LX5211 and UC5606 (IMP5111)
- Pin-for-pin compatible with LX5212 and UC5603/5613/5614 (IMP5112)

Pin Configuration

Ordering Information

Part Number	Temperature Range	Package	
IMP5111CDP	0°C to 125°C	16-pin Plastic SO	
IMP5111CDPT	0°C to 125°C	Tape and Reel, 16-pin Plastic SO	
IMP5111CPWP	0°C to 125°C	24-pin Plastic TSSOP	
IMP5111CPWPT	0°C to 125°C	Tape and Reel, 24-pin Plastic TSSOP	
IMP5112CDP	0°C to 125°C	16-pin Plastic SO	
IMP5112CDPT	0°C to 125°C	Tape and Reel, 16-pin Plastic SO	
IMP5112CPWP	0°C to 125°C	24-pin Plastic TSSOP	
IMP5112CPWPT	0°C to 125°C	Tape and Reel, 24-pin Plastic TSSOP	

5111/5112_t01.at3

Absolute Maximum Ratings¹

TermPwr Voltage	+7V
Signal Line Voltage	OV to +7V
Regulator Output Current).4A
Operating Junction Temperature	
Plastic (DP, PWP Packages)	L50°C

Thermal Data

DP Package:

Thermal Resistance Junction-to-Leads, θ_{IL}	20°C/W
Thermal Resistance Junction-to-Ambient, θ_{JA}	50°C/W
PW Package:	
Thermal Resistance Junction-to-Leads, θ_{JL}	27°C/W
Thermal Resistance Junction-to-Ambient, θ_{JA} 1	100°C/W

Storage Temperature Range-65°C to 150°C Lead Temperature (Soldering, 10 seconds) 300°C

Junction Temperature Calculation: $T_J = T_A + (P_D \ x \ \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the ambient airflow is assumed.

Note: 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

Recommended Operating Conditions²

Parameter		Symbol	Min	Тур	Max	Units
TermPwr Voltage		V _{TERM}	3.3		5.5	V
High Level Enable Input Voltage	IMP5111	V _{IH}	2		V _{TERM}	V
	IMP5112		0		0.8	
Low Level Disable Input Voltage	IMP5111	V _{IL}	0		0.8	V
	IMP5112		2		V _{TERM}	
Operating Junction Temperature Range			0		125	°C

Note: 2. Recommended operating conditions indicate the range over which the device is functional.

5111/5112_t02.eps

Electrical Characteristics

Parameter		Symbol Conditions		Min	Тур	Max	Units
Output High Voltage		V _{OUT}		2.65	2.85		V
TermPwr Supply Current		I _{CC}	All data lines = Open		6	9	mA
			All data lines = 0.5V		215	225	
	IMP5111		DISCONNECT Pin < 0.8V		275		μΑ
	IMP5112		DISCONNECT Pin > 2.0V		275		
Output Current		I _{OUT}	V _{OUT} = 0.5V	-21	-23	-24	mA
DISCONNECT Input Current	IMP5111	l _{iN}	DISCONNECT Pin = 4.75V		10		nA
			DISCONNECT Pin = 0V		-90		μΑ
DISCONNECT Input Current	IMP5112	I _{IN}	DISCONNECT Pin = 0V		-90		μΑ
			DISCONNECT Pin = 4.75V		10		nA
Output Leakage Current	IMP5111	I _{OL}	$\overline{\text{DISCONNECT}}$ Pin < 0.8V, V ₀ = 0.5V		10		nA
	IMP5112		DISCONNECT Pin > 2.0V, $V_0 = 0.5V$		10		
Capacitance in DISCONNECT Mode		Солт	V _{OUT} = 0V, Frequency = 1MHz		3		pF
Channel Bandwidth		BW			35		MHz
Termination Sink Current, per Channel		I _{SINK}	V _{OUT} = 4V		60		mA

Unless otherwise specified, these specifications apply at an ambient operating temperature of $T_A = 25^{\circ}$ C. TermPwr = 4.75V. Low duty cycle pulse testing techniques are used which maintain junction and case temperatures equal to the ambient temperature.

5111/5112_t03.eps

Application Information

Figure 1. Receiving Waveform – 20MHz

Figure 2. Driving Waveform – 20MHz

IMP5111/IMP5112 Maximizes Line Current

Cable transmission theory suggests to optimize signal speed and quality, the termination should act both as an ideal voltage reference when the line is released (deasserted) and as an ideal current source when the line is active (asserted). Common active terminators which consist of linear regulators in series with resistors (typically 110 Ω) are a compromise. With coventional linear terminators as the line voltage increases the amount of current decreases linearly by the equation;

$$\frac{\left(V_{REF}-V_{LINE}\right)}{R}=I.$$

The IMP5111/5112, with their unique architecture, applies the maximum amount of current regardless of line voltage until the termination high threshold (2.85V) is reached.

Disable /Sleep Mode

The IMP5111 has an active LOW disconnect pin, and the IMP5112 has an active HIGH disconnect pin. The disable mode is entered if the disconnect pin on either device is left open.

When disabled the termination lines are in a high impedance state, and the power supply current drops to 275μ A typically. The disable mode can be used to save power or completely eliminate the terminator from the SCSI bus.

Disabled terminators appear as distributed capacitance on the bus. The IMP5111/5112 have been optimized to have only 3pF of capacitance per output when in the disabled mode.

The IMP5111/5112 are compatible with active negation drivers. The devices will handle up to 60mA of sink current for drivers which exceed the 2.85V output high level.

IMP5111 DISCONNECT	IMP5112 DISCONNECT	Outputs	Quiescent Current
Н	L	Enabled	6mA
L	Н	Disabled/High Impedance	275μΑ
Open	Open	Disabled/High Impedance	275μΑ
	•		5111/5112_t04a.eps

Table 1. Power Up/ Power Down Function Table

Package Dimensions

TSSOP (24-Pin)

	Inche	s	Millimeters				
	Min	Min Max		Max			
	SO (16-Pin)*						
A	0.053	0.069	1.35	1.75			
A1	0.004	0.010	0.10	0.25			
В	0.014	0.018	0.35	0.46			
С	0.007	0.010	0.19	0.25			
D	0.385	0.394	9.78	10.01			
E	0.150	0.158	3.81	4.01			
е	0.050	BSC	1.27 BSC				
Н	0.228	0.244	5.79	6.20			
L	0.016	0.050	0.40	1.27			
М	0°	8°	0°	8°			
		TSSOP (24	4-Pin)				
Α	0.032	0.041	0.80	1.05			
В	0.007	0.012	0.19	0.30			
С	0.0035	0.0071	0.09	0.180			
D	0.303	0.311	7.70	7.90			
E	0.169	0.176	4.30	4.48			
F	0.025	BSC	0.65 BSC				
G	0.002	0.005	0.05	0.15			
Н		0.0433	<u> </u>	1.10			
L	0.020	0.028	0.50	0.70			
М	0°	8°	0°	8°			
Р	0.246	0.256	6.25	6.50			
* IF	* IEDEC Drawing MS-012AC 5111/5112_106.at3						

JEDEC Drawing MS-012AC

IMP, Inc. Corporate Headquarters 2830 N. First Street San Jose, CA 95134-2071 Tel: 408-432-9100 Fax: 408-432-1085 e-mail: info@impinc.com http://www.impweb.com

© 2002 IMP, Inc. Printed in USA Publication #: 7007 Revision: C Issue Date: 08/19/02 Type: Product