

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Full Military Temperature Operating Range (-55°C to + 125°C)
- MIL-STD-883C Processing
- 16K x 4 Bit Organization
- · 45, 55 and 70 nsec Access Times
- Fully TTL Compatible
- Common Data Input & Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 22-Pin, 300-mil DIP (JEDEC Std.)
- · 22-Pin Ceramic LCC (JEDEC Std.)
- Battery Backup Operation 2V Data Retention (L version only)

IMS1620M IMS1620LM CMOS High Performance 16K x 4 Static RAM MIL-STD-883C

DESCRIPTION

The INMOS IMS1620M is a high performance 16Kx4 CMOS Static RAM processed in full compliance to MIL-STD-883C and guaranteed to operate over the full military temperature range. The IMS1620M provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1620M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1620M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1620LM is a low power version offering battery backup data retention operating from a 2 volt supply.

The IMS1624M is the functional equivalent of the IMS1620M with an added Output Enable function.

November 1989

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss2.0 to 7.0V
Voltage on I/O Pins (13-16)1.0 to (Vcc+0.5)
Temperature Under Bias55° C to 125°C
Storage Temperature65° C to 150°C
Power Dissipation
DC Output Current

"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect reliability.

(One output at a time, one second duration)

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Vier	Input Logic "1" Voltage	2.0		Vcc+.5	V	All inputs
ViL	Input Logic "0" Voltage	-1.0°		0.8	V	All inputs
TA	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

"Vit min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (-55°C \leq TA \leq 125°C) (Vcc = 5.0V \pm 10%)^a

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES	
ICC1	Average Vcc Power Supply Current		100	mA	tavav = tAVAV (min)	
ICC2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		30	mA	E ≥ VIH. All other inputs at	
IUUL	IMS1620L version		20	11175	VIN S VIL OF 2 VIH	
Іссз	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		19	mA	E Σ (Vcc - 0.2). All other inputs at	
	IMS1620L version		8		ViN ≤ 0.2 or ≥ (Vcc - 0.2V)	
ICC4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		20	mA	$E \ge (Vcc - 0.2)$. Inputs cycling at	
	IMS1620L version		8	ma	VIN ≤ 0.2 or ≥ (Vcc - 0.2V)	
IILK	Input Leakage Current (Any Input)		± 5	μΑ	Vcc = max VIN = Vss to Vcc	
Iolk	Off State Output Leakage Current		± 10	μА	Vcc = max VIN = Vss to Vcc	
Vон	Output Logic "1" Voltage	2.4		V	lон = -4mA	
VOL	Output Logic "0" Voltage		0.4	V	IoL = 8mA	

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels Vss to 3V
Input Rise and Fall Times5ns
Input and Output Timing Reference Levels 1.5V
Output Load See Figure 1

CAPACITANCE^b (Ta=25°C, f=1.0 MHZ)

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
CIN	Input Capacitance	4	pF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	pF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_{A} \le 125^{\circ}C$) ($V_{CC} = 5.0V = 10\%$)

READ CYCLE⁹

NO.	SYMBOL Standard Alternate			IMS16	20M-45	IMS162	20M-55	IMS162	20M-70	UNITS	NOTES
NO.			PARAMETER		MAX	MIN	MAX	MIN	MAX	ONTS	NOTES
1	TELOV	tacs	Chip Enable Access Time		45		55		70	ns	
2	tavav	tac	Read Cycle Time	45		55		70		ns	с
3	tavov	LAA	Address Access Time		45		55		70	ns	d
4	taxox	AXOX TOH Output Hold After Address Change		5		5		5		ns	
5	TELOX	t.z	Chip Enable to Output Active	5		5		5		ns	j
6	TEHOZ	tHZ	Chip Disable to Output Inactive	0	15	0	20	0	25	ns	f, j
7	telicch	tPu	Chip Enable to Power Up	0		0		0		ns	j
8	TEHICCL	teo	Chip Enable to Power Down		45		55		70	ns	j
		tr	Input Rise and Fall Times		50		50		50	ns	e,j

Note c: For READ CYCLE 1 & 2, W is high for entire cycle

Note d: Device is continuously selected; E low

Note e: Measured between Vil max and Vie min

Note (: Measured ±200mV from steady state output voltage. Load capacitance is 5pF. Note g: \overline{E} and \overline{W} must transition between Vik to ViL or ViL to Vik in a monotonic tashion. Note j: Parameter guaranteed but not tested.

RECOMMENDED AC OPERATING CONDITIONS (-55°C & TA & +125°C) (Vcc = 5.0V ±10%) WRITE CYCLE 1: W CONTROLLED^{g,h}

NO.	SYMBOL		PARAMETER	IMS16:	20M-45	IMS1620M-55		IMS1620M-70		UNITS	NOTES
NU.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
9	tavav	twc	Write Cycle Time	40		50		60		ns	
10	tw∟wн	twp	Write Pulse Width	30		40		50		ns	
11	telwh	tcw	Chip Enable to End of Write	30		40		50		ns	
12	tovwn	tow	Data Setup to End of Write	20		25		30		ns	
13	twhdx	tDн	Data Hold after End of Write	0		0		0		ns	
14	tavw h	taw	Address Setup to End of Write	30		40		50		ns	
15	LAVWL.	tas	Address Setup to Start of Write	0		0		0		ns	
16	twhax	twa	Address Hold after End of Write	0		0		0		ns	
17	twLQZ	twz	Write Enable to Output Disable	0	15	0	20	0	25	ns	f, j
18	twнox	tow	Output Active after End of Write	5		5		5		ns	i, j

Note 1: Measured ±200mV from steady state output voltage. Load capacitance is 5pF

Note g: \overline{E} and \overline{W} must transition between Vin to Vi. to Vin to A in a monotonic fashion Note h: \overline{E} or \overline{W} must be \ge Vin during address transitions.

Note i: If W is low when E goes low, the outputs remain in the high impedance state

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS (-55°C ≤Ta ≤ 125°C) (Vcc = 5.0V ±10%) WRITE CYCLE 2: E CONTROLLED^{g, h}

SYMBOL		PARAMETER	IMS162	20M-45	IMS1620M-55		IMS1620M-70		LINITS	NOTES
Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX	01113	NOTES
LAVAV	twc	Write Cycle Time	40		50		60		ns	
TWLEH	twp	Write Pulse Width	30	_	40		50		ns	
TELEH	tcw	Chip Enable to End of Write	30		40		50		ns	
1DVEH	tow	Data Setup to End of Write	20		25		30		ns	
t EHDX	toн	Data Hold after End of Write	0		0		0		ns	
taven	LAW	Address Setup to End of Write	30		40		50		ns	
TEHAX	twa	Address Hold after End of Write	0		0		0		ns	
TAVEL	tas	Address Setup to Start of Write	0		0		0		ns	
twildz	twz	Write Enable to Output Disable	0	15	0	20	0	25	ns	f, j
	Standard tavav twLEH tELEH tDVEH tEHDX tAVEH tEHAX tAVEL	Standard Atternate tavav twc twLEH twp teLEH tcw tDVEH tbw teHDX tbH taveH taw teHAX twR taveL tas	Standard Atternate PARAMETER tavav twc Write Cycle Time twLEH twp Write Pulse Width tELEH tcw Chip Enable to End of Write tDVEH tow Data Setup to End of Write tEHDX tbH Data Hold after End of Write taveH taw Address Setup to End of Write tEHAX twR Address Hold after End of Write taveL tas Address Setup to Start of Write	Standard Atternate MAN tavav twc Write Cycle Time 40 twLEH twp Write Pulse Width 30 teLEH tcw Chip Enable to End of Write 30 tovEH tow Data Setup to End of Write 20 teHDX toH Data Hold after End of Write 0 tavEH taw Address Setup to End of Write 30 teHAX twR Address Setup to End of Write 0 tavEL tas Address Setup to Start of Write 0	Standard Atternate PARAMETER MIN MAX tavav twc Write Cycle Time 40 40 twLEH twp Write Pulse Width 30 30 30 teLEH tcw Chip Enable to End of Write 30 30 30 toveH tow Data Setup to End of Write 0 30 30 30 teHDX toH Data Hold after End of Write 0 30 30 30 teHAX twR Address Setup to End of Write 0 30	Standard Atternate PAHAMETER MIN MAX MIN tavav twc Write Cycle Time 40 50 twLEH twp Write Pulse Width 30 40 tELEH tcw Chip Enable to End of Write 30 40 tDVEH tow Data Setup to End of Write 20 25 tEHDX toH Data Hold after End of Write 0 0 tavEH taw Address Setup to End of Write 30 40 tavEH taw Address Setup to End of Write 0 0 0 tavEH tas Address Setup to Start of Write 0 0 0	Standard AtternateAtternatePARAMETERMINMAXMINMAXtavavtwcWrite Cycle Time4050twLEHtwpWrite Pulse Width3040teLEHtcwChip Enable to End of Write3040toveHtowData Setup to End of Write2025teHDXtoHData Hold after End of Write00taveHtawAddress Setup to End of Write3040teHAXtwRAddress Hold after End of Write00taveHtasAddress Setup to Start of Write00	PARAMETERMINMAXMINMAXMINtavavtwcWrite Cycle Time405060twLEHtwpWrite Pulse Width304050teLEHtcwChip Enable to End of Write304050tovEHtowData Setup to End of Write202530teHDXtoHData Hold after End of Write000tavEHtawAddress Setup to End of Write304050tavEHtawAddress Setup to End of Write000tavEHtwRAddress Hold after End of Write000tavELtasAddress Setup to Start of Write000	PARAMETERMINMAXMINMAXMINMAXtavavtwcWrite Cycle Time405060twLEHtwpWrite Pulse Width30405010teLEHtcwChip Enable to End of Write30405010toveHtowData Setup to End of Write20253010teHDXtoHData Hold after End of Write00010taveHtawAddress Setup to End of Write30405010taveHtawAddress Hold after End of Write00010taveLtasAddress Setup to Start of Write0000	PARAMETERMINMAXMINMAXMINMAXMINMAXtavavtwcWrite Cycle Time405060nstwLEHtwpWrite Pulse Width30405060nsteLEHtcwChip Enable to End of Write3040500nstovEHtowData Setup to End of Write202530nsteHDXtoHData Hold after End of Write000nstavEHtawAddress Setup to End of Write304050nstavEHtawAddress Setup to End of Write000nstavEHtawAddress Setup to End of Write000nstavELtasAddress Setup to Start of Write000ns

Note I: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: E or W must be 2 Vin during address transitions.

Note i: If W is low when E goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

inmos

DEVICE OPERATION

The IMS1620M has two control inputs, a Chip Enable (/E) and Write Enable (/W), 14 address inputs (A0 -A13), and four Data I/O pins.

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4-bit word out of 16,384. Read and Write operations on the memory cells are controlled by the /W input. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-third of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as /W \ge VIH min with /E \le VIL max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goeslow, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITECYCLE

The write cycle of the IMS 1620M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers are turned on tELOX after the falling edge of /E (just as in a read cycle). The output buffers are then turned off within twLOZOF the falling edge of /W. During this interval it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twLOZ to aviod bus contention. WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1620M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components, so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
VDR	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC}-0.2V) E \ge (V_{CC}-0.2V)$
CCDR1	Data Retention Current		15	1200	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		10	800	μA	V _{CC} = 2.0 volts
t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t VCCHEL	Recovery Time (t _R)	tRC			ns	j, k (t _{RC} = Read Cycle Time)

*Typical data retention parameters at 25°C.

Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per µS from VDR to VCC min.

LOW V CC DATA RETENTION

Туре	Package	Lead finish
A	Formed flat-pack	gold
B	Formed flat-pack	solder
C	LCC	gold
D	Cerdip	solder
E	Small outline, J-bend	solder
G	PGA	gold
н	Small outline, Gull wing	solder
J	PLCC, J-bend	solder
K	Sidebraze ceramic DIP	solder
N	Ceramic LCC	solder
P	Plastic DIP	solder
S	Sidebraze ceramic DIP	gold
T	(Skinny) Flat-pack	solder
W	Ceramic LCC	gold
Y	(Skinny) Flat-pack	gold

TRUTH TABLE

E	W	Q	MODE
Н	х	HI-Z	Standby (Isb)
L	Н	Dout	Read
L	L	HI-Z	Write

ORDERING INFORMATION

DEVICE	SPEED PACKAGE		PARTN	UMBER
	SPEED	PACKAGE	STANDARD	LOW POWER
IMS 1620M IMS1620LM	45ns 45ns 55ns 55ns 70ns 70ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1620S-45M IMS1620N-45M IMS1620S-55M IMS1620N-55M IMS1620S-70M IMS1620N-70M	IMS1620LS45M IMS1620LN45M IMS1620LS55M IMS1620LN55M IMS1620LS70M IMS1620LN70M

PACKAGING INFORMATION

22 Pin Leadless Chip Carrier

Dim	Inches		mm		Notes
	Nom	Tol	Nom	Tol	notes
A	.071	.007	1.803	.178	
B1	.025	.003	.635	.076	
D	.490	.006	13.446	.152	
E	.290	.006	7.366	.152	
e1	.050		1.270		

inmos

