
 1

Intel 8085 8-bit Microprocessor

Intel 8085 is an 8-bit, NMOS microprocessor. It is a 40 pin C package fabricated on a

single LSI chip. The Intel 8085A uses a single +5V D.C supply for its operation. Its clock

speed is about 3 MHz. The clock cycle is of 320 ns. The time for the back cycle of the

Intel 8085 A-2 is 200 ns. It has 80 basic instructions and 246 opcodes. Figure 1 shows the

block diagram of Intel 8085A. It consists of three main sections, an arithmetic and logic

unit a timing and control unit and several registers. These important sections are

described as under.

ALU

The arithmetic and logic unit, ALU performs the following arithmetic and logic

operations.

1. Addition

2. Subtraction

3. Logical AND

4. Logical OR

5. Logical EXCLUSIVE OR

6. Complement (logical NOT)

7. Increment (add 1)

8. Decrement (subtract 1)

9. Left shift (add input to itself)

10. Clear (result is zero)

Timing and Control Unit

The timing and control unit is a section of the CPU. It generates timing and control

signals which are necessary for the execution of instructions. It controls provides status,

control and timing signals which are required for the operation of memory and I/O

 2

devices. It controls the entire operation of the microprocessor and peripherals consented

to it. Thus it is seen that control unit of the CPU acts as a brain of the computer.

Registers

Figure 1 show the various registers of Intel 8085A. Registers are small memories within

the CPU. They are used by the microprocessor for temporary storage and manipulation of

data and instructions. Data remain in the registers till they are sent to the memory or I/O

devices. In a large computer the number of registers is more and hence the program

requires less transfer of data to and from the memory. In small computers the number of

registers is small due to the limited size of the chip. Intel 8085 microprocessor has the

following registers.

1. One 8-bit accumulator (ACC) i.e. register A.

2. Six 8-bit general purpose registers. These are B, C, D, E, H and L.

3. One 16-bit program counter, PC.

4. Instruction register

5. Status register

6. Temporary register.

 3

Figure 1: Intel 8085 Microprocessor Internal Block Diagram

In addition to the above mentioned registers Intel 8085 microprocessor also contains

address buffer and data/address buffer. Figure 1 the block diagram of Intel 8085. The

program counter PC, contains the address of the next instruction. The CPU fetches an

instruction from the memory executes it and increments the content of the program

counter. Thus in the next instruction cycle it will fetch next instruction. Instructions are

executed sequentially unless an instruction changes the content of the program counter.

The instruction register holds the instruction until it is decoded. This cannot be accessed

by the programmer.

The stack pointer SP, holds the address of the stack top. The stack is a sequence of

memory locations defined by the programmer. The stack is used to save the content of a

register during the execution of a program. The last memory location of the occupied

 4

portion of the stack is called stack top. For example, suppose that the stack location 2000

is the stack top which is contained by the stack pointer. Now the contents of B-C pair so

to be saved. This will be stored in the stack locations 1999 and 1998. The new stack top

will be stored in the stack pointer. The new stack top is the location 1998. If more data

come they will be stored in the stack location 1997 onwards. Suppose the contents of H-L

pair are to be pushed. They will go in 1997 and 1996. The new stack top will be the stack

location 1996 and vacant locations are 1995 onward.

There are six 8-bit registers which are used for general purpose as desired by the

programmer. These 8-bit registers are A, B, C, D, E, H and L. To handle 16-bit data two

8-bit registers can be combined. The combination of two 8-bit registers is called a register

pair. The valid register pairs in Intel 8085 are B-C, D-E and H-L. The H-L pair is used to

address memories. The register A is accumulator in Intel 8080/8085. This is for

temporary storage used during the execution to a program. It holds one of the operands.

The other operand may be either in the memory or in one of the registers.

There is a set of five flip-flops which act as status flags. Each of these flip-flop holds 1-

bit flag at indicates certain condition which arises during arithmetic and logic operations.

The following status flags have been provided in Intel 8085.

1. CARRY (CS)

2. ZERO (Z)

3. SIGN (S)

4. PARITY (P)

5. AUXILIARY CARRY (AC)

Carry (CS)

The carry status flag holds carry out of the most significant bit resulting from the

execution of an arithmetic operation. If there is a carry from addition or a borrow from

subtraction or comparison, the carry flag CS is set to 1, otherwise 0.

 5

Zero (Z)

The zero status flag Z is set to 1 if the result of an arithmetic or logical operation is zero.

For non-zero result it is set to 0.

Sign (S)

The sign status flag is set to 1 if the most significant bit of the result of an arithmetic or

logical operation is 1 otherwise 0.

Parity (P)

The parity status flag is set to 1 when result of the operation contains even number of 1's.

It is set to zero when there is odd number of 1's.

Auxiliary Carry (AC)

The auxiliary carry status flag holds carry out of bit 3 to 4 resulting from the execution of

an arithmetic operation.

Figure 3 shows the status flags for ADD operation. Take an example of the instruction

ADD B. The execution of the instruction ADD B will add the content of the register B to

the contents of the accumulator. Suppose the contents of the accumulator and register B

are C.B and ES respectively. Now C.B and ES are added and the result is 01, B4. As the

 6

accumulator is an 8-bit register B4 remains in the accumulator and there is a carry. The

various status flags are shown in figure 2.

Figure 3: Status Flag for ADD Operation

PSW

In figure 2 Five bits indicate the five status flags and three bits are undefined. The

combination of these 8 bits is called Program Status Word (PSW). PSW and the

accumulator are treated as a 16-bit unit for stack operations.

Data and Address Bus

The Intel 8085 is an 8-bit microprocessor. Its data bus is 8-bit wide and hence, 8 bits of

data can be transmitted in parallel from or to the microprocessor. The Intel 8085 requires

a 16-bits. The 8 most significant bits of the address are transmitted by the address bus,

(Pins A8, to A15). The 8 least significant bits of the address are transmitted by

address/data bus, (Pins AD0 to AD7). The address/data bus transmits data and address at

different moments. At a particular moment it transmits either data or address. Thus the

AD-bus operates in time shared mode. This technique is known as multiplexing. First of

all 16-bit memory address is transmitted by the microprocessor the 8 MSBs of the

address on the A-bus and the 8 LSBs of the address on AD-bus. Thus the effective width

of the address is latched so that the complete 16-bit address remains available for further

operation. The 8-bit AD-bus now becomes free, and it is available for data transmission

 7

2
16

 (i.e. 64K, where 1K = 1024 bytes) memory location can be addressed directly by Intel

8085. Each memory location contains 1 byte of data.

Timing and Control Signals

The timing and control unit generates timing signals for the execution of instruction and

control of peripheral devices. The organization of a microprocessor and types of registers

differ from processor to processor. The timing used for the execution of instructions and

control of peripherals are different for different microprocessors. The selection of a

suitable microprocessor for a particular application is a tough task for an engineer. The

knowledge of the organization and timing and control system helps an engineer in the

selection of a microprocessor. The design and cost of a processor also depends on the

timing structure and register organization.

For the execution of an instruction a microprocessor fetches the instruction from the

memory and executes it. The time taken for the execution of an instruction is called

instruction cycle (IC). An instruction cycle (IC). An instruction cycle consists of a fetch

cycle (FC) and an execute cycle (EC). A fetch cycle is the time required for the fetch

operation in which the machine code of the instruction (opcode) is fetched from the

memory. This time is a fixed slot of time. An execute cycle is of variable width which

depends on the instruction to be executed. The total time for the execution is given by

IC = FC + EC

Fetch Operation

In fetch operation the microprocessor gets the 1st byte of the instruction, which is

operation code (opcode), from the memory. The program counter keeps the track of

address of the next instruction to be executed. In the beginning of the fetch cycle the

content of the program counter is sent to the memory. This takes one clock cycle. The

memory first reads the opcode. This operation also takes one clock cycle. Then the

memory sends the opcode to the microprocessor, which takes one clock period. The total

 8

time for fetch operation is the time required for fetching an opcode from the memory.

This time is called fetch cycle. Having received the address from the microprocessor the

memory takes two clock cycles to respond as explained above. If the memory is slow, it

may take more time. In that case the microprocessor has to wait for some time till it

receives the opcode from the memory. The time for which the microprocessor waits is

called wait cycle. Most of the microprocessor have provision for wait cycles to cope with

slow memory.

Execute Operation

The opcode fetched from the memory goes to the data register, DR (data/address buffer

in Intel 8085) and then to instruction register, IR. From the instruction register it goes to

the decoder circuitry is within the microprocessor. After the instruction is decoded,

execution begins. If the operand is in the general purpose registers, execution is

immediately performed. The time taken in decoding and the address of the data, some

read cycles are also necessary to receive the data from the memory. These read cycle are

similar to opcode fetch cycle. The fetch quantities in these cycles are address or data.

Figure 4 (a) and Figure 4 (b) shows an instruction and fetch cycle respectively.

 9

Machine Cycle

An instruction cycle consists of one or more machine cycles as shown in Figure 5. This

figure is for MVI instruction. A machine cycle consists of a number of clock cycles. One

clock cycle is known as state.

 10

Applications of Microprocessor

Microprocessor are being used for numerous applications and the list of applications is

becoming longer and longer. To give an idea of microprocessor applications few areas

are given below.

1. Personal Computer

2. Numerical Control

3. Mobile Phones

4. Automobiles

5. Bending Machines

6. Medical Diagnostic Equipment

7. Automatic voice recognizing systems

8. Prosthetics

9. Traffic light Control

10. Entertainment Games

11. Digital Signal Processing

12. Communication terminals

13. Process Control

14. Calculators

15. Sophisticated Instruments

16. Telecommunication Switching Systems

17. Automatic Test Systems.

 11

INSTRUCTION SET OF INTEL 8085

An Instruction is a command given to the computer to perform a specified operation on

given data. The instruction set of a microprocessor is the collection of the instructions

that the microprocessor is designed to execute. The instructions described here are of

Intel 8085. These instructions are of Intel Corporation. They cannot be used by other

microprocessor manufactures. The programmer can write a program in assembly

language using these instructions. These instructions have been classified into the

following groups:

1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4. Branch Control Group

5. I/O and Machine Control Group

Data Transfer Group

Instructions, which are used to transfer data from one register to another register, from

memory to register or register to memory, come under this group. Examples are: MOV,

MVI, LXI, LDA, STA etc. When an instruction of data transfer group is executed, data is

transferred from the source to the destination without altering the contents of the source.

For example, when MOV A, B is executed the content of the register B is copied into the

register A, and the content of register B remains unaltered. Similarly, when LDA 2500 is

executed the content of the memory location 2500 is loaded into the accumulator. But the

content of the memory location 2500 remains unaltered.

Arithmetic Group

The instructions of this group perform arithmetic operations such as addition, subtraction;

increment or decrement of the content of a register or memory. Examples are: ADD,

SUB, INR, DAD etc.

 12

Logical Group

The Instructions under this group perform logical operation such as AND, OR, compare,

rotate etc. Examples are: ANA, XRA, ORA, CMP, and RAL etc.

Branch Control Group

This group includes the instructions for conditional and unconditional jump, subroutine

call and return, and restart. Examples are: JMP, JC, JZ, CALL, CZ, RST etc.

I/O and Machine Control Group

This group includes the instructions for input/output ports, stack and machine control.

Examples are: IN, OUT, PUSH, POP, and HLT etc.

Intel 8085 Instructions

1. Data Transfer Group

1. MOV r1, r2 (Move Data; Move the content of the one register to another).

[r1] <-- [r2]

2. MOV r, m (Move the content of memory register). r <-- [M]

3. MOV M, r. (Move the content of register to memory). M <-- [r]

4. MVI r, data. (Move immediate data to register). [r] <-- data.

5. MVI M, data. (Move immediate data to memory). M <-- data.

6. LXI rp, data 16. (Load register pair immediate). [rp] <-- data 16 bits, [rh]

<-- 8 LSBs of data.

7. LDA addr. (Load Accumulator direct). [A] <-- [addr].

8. STA addr. (Store accumulator direct). [addr] <-- [A].

9. LHLD addr. (Load H-L pair direct). [L] <-- [addr], [H] <-- [addr+1].

10. SHLD addr. (Store H-L pair direct) [addr] <-- [L], [addr+1] <-- [H].

11. LDAX rp. (LOAD accumulator indirect) [A] <-- [[rp]]

 13

12. STAX rp. (Store accumulator indirect) [[rp]] <-- [A].

13. XCHG. (Exchange the contents of H-L with D-E pair) [H-L] <--> [D-E].

2. Arithmetic Group

1. ADD r. (Add register to accumulator) [A] <-- [A] + [r].

2. ADD M. (Add memory to accumulator) [A] <-- [A] + [[H-L]].

3. ADC r. (Add register with carry to accumulator). [A] <-- [A] + [r] + [CS].

4. ADC M. (Add memory with carry to accumulator) [A] <-- [A] + [[H-L]]

[CS].

5. ADI data (Add immediate data to accumulator) [A] <-- [A] + data.

6. ACI data (Add with carry immediate data to accumulator). [A] <-- [A] +

data + [CS].

7. DAD rp. (Add register paid to H-L pair). [H-L] <-- [H-L] + [rp].

8. SUB r. (Subtract register from accumulator). [A] <-- [A] – [r].

9. SUB M. (Subtract memory from accumulator). [A] <-- [A] – [[H-L]].

10. SBB r. (Subtract register from accumulator with borrow). [A] <-- [A] – [r]

– [CS].

11. SBB M. (Subtract memory from accumulator with borrow). [A] <-- [A] –

[[H-L]] – [CS].

12. SUI data. (Subtract immediate data from accumulator) [A] <-- [A] – data.

13. SBI data. (Subtract immediate data from accumulator with borrow). [A] <-

- [A] – data – [CS].

14. INR r (Increment register content) [r] <-- [r] +1.

15. INR M. (Increment memory content) [[H-L]] <-- [[H-L]] + 1.

16. DCR r. (Decrement register content). [r] <-- [r] – 1.

17. DCR M. (Decrement memory content) [[H-L]] <-- [[H-L]] – 1.

18. INX rp. (Increment register pair) [rp] <-- [rp] – 1.

19. DCX rp (Decrement register pair) [rp] <-- [rp] -1.

20. DAA (Decimal adjust accumulator) .

 14

The instruction DAA is used in the program after ADD, ADI, ACI, ADC,

etc instructions. After the execution of ADD, ADC, etc instructions the

result is in hexadecimal and it is placed in the accumulator. The DAA

instruction operates on this result and gives the final result in the decimal

system. It uses carry and auxiliary carry for decimal adjustment. 6 is added

to 4 LSBs of the content of the accumulator if their value lies in between

A and F or the AC flag is set to 1. Similarly, 6 is also added to 4 MSBs of

the content of the accumulator if their value lies in between A and F or the

CS flag is set to 1. All status flags are affected. When DAA is used data

should be in decimal numbers.

3. Logical Group

1. ANA r. (AND register with accumulator) [A] <-- [A] ^ [r].

2. ANA M. (AND memory with accumulator). [A] <-- [A] ^ [[H-L]].

3. ANI data. (AND immediate data with accumulator) [A] <-- [A] ^ data.

4. ORA r. (OR register with accumulator) [A] <-- [A] v [r].

5. ORA M. (OR memory with accumulator) [A] <-- [A] v [[H-L]]

6. ORI data. (OR immediate data with accumulator) [A] <-- [A] v data.

7. XRA r. (EXCLUSIVE – OR register with accumulator) [A] <-- [A] v [r]

8. XRA M. (EXCLUSIVE-OR memory with accumulator) [A] <-- [A] v

[[H-L]]

9. XRI data. (EXCLUSIVE-OR immediate data with accumulator) [A] <--

[A]

10. CMA. (Complement the accumulator) [A] <-- [A]

11. CMC. (Complement the carry status) [CS] <-- [CS]

12. STC. (Set carry status) [CS] <-- 1.

13. CMP r. (Compare register with accumulator) [A] – [r]

14. CMP M. (Compare memory with accumulator) [A] – [[H-L]]

15. CPI data. (Compare immediate data with accumulator) [A] – data.

 15

The 2nd byte of the instruction is data, and it is subtracted from the

content of the accumulator. The status flags are set according to the result

of subtraction. But the result is discarded. The content of the accumulator

remains unchanged.

16. RLC (Rotate accumulator left) [An+1] <-- [An], [A0] <-- [A7],[CS] <--

[A7].

The content of the accumulator is rotated left by one bit. The seventh bit

of the accumulator is moved to carry bit as well as to the zero bit of the

accumulator. Only CS flag is affected.

17. RRC. (Rotate accumulator right) [A7] <-- [A0], [CS] <-- [A0], [An] <--

[An+1].

The content of the accumulator is rotated right by one bit. The zero bit of

the accumulator is moved to the seventh bit as well as to carry bit. Only

CS flag is affected.

18. RAL. (Rotate accumulator left through carry) [An+1] <-- [An], [CS] <--

[A7], [A0] <-- [CS].

19. RAR. (Rotate accumulator right through carry) [An] <-- [An+1], [CS] <--

[A0], [A7] <-- [CS]

 16

4. Branch Group

1. JMP addr (label). (Unconditional jump: jump to the instruction specified

by the address). [PC] <-- Label.

2. Conditional Jump addr (label): After the execution of the conditional jump

instruction the program jumps to the instruction specified by the address

(label) if the specified condition is fulfilled. The program proceeds further

in the normal sequence if the specified condition is not fulfilled. If the

condition is true and program jumps to the specified label, the execution

of a conditional jump takes 3 machine cycles: 10 states. If condition is not

true, only 2 machine cycles; 7 states are required for the execution of the

instruction.

1. JZ addr (label). (Jump if the result is zero)

2. JNZ addr (label) (Jump if the result is not zero)

3. JC addr (label). (Jump if there is a carry)

4. JNC addr (label). (Jump if there is no carry)

5. JP addr (label). (Jump if the result is plus)

6. JM addr (label). (Jump if the result is minus)

7. JPE addr (label) (Jump if even parity)

8. JPO addr (label) (Jump if odd parity)

3. CALL addr (label) (Unconditional CALL: call the subroutine identified by

the operand)

CALL instruction is used to call a subroutine. Before the control is

transferred to the subroutine, the address of the next instruction of the

main program is saved in the stack. The content of the stack pointer is

decremented by two to indicate the new stack top. Then the program

jumps to subroutine starting at address specified by the label.

4. RET (Return from subroutine)

 17

5. RST n (Restart) Restart is a one-word CALL instruction. The content of

the program counter is saved in the stack. The program jumps to the

instruction starting at restart location.

5. Stack, I/O and Machine Control Group

1. IN port-address. (Input to accumulator from I/O port) [A] <-- [Port]

2. OUT port-address (Output from accumulator to I/O port) [Port] <-- [A]

3. PUSH rp (Push the content of register pair to stack)

4. PUSH PSW (PUSH Processor Status Word)

5. POP rp (Pop the content of register pair, which was saved, from the stack)

6. POP PSW (Pop Processor Status Word)

7. HLT (Halt)

8. XTHL (Exchange stack-top with H-L)

9. SPHL (Move the contents of H-L pair to stack pointer)

10. EI (Enable Interrupts)

11. DI (Disable Interrupts)

12. SIM (Set Interrupt Masks)

13. RIM (Read Interrupt Masks)

14. NOP (No Operation)

 18

ADDRESSING MODES OF 8085

 Every instruction of a program has to operate on a data.

 The method of specifying the data to be operated by the instruction is called

Addressing.

 The 8085 has the following 5 different types of addressing.

 1. Immediate Addressing

 2. Direct Addressing

 3. Register Addressing

 4. Register Indirect Addressing

 5. Implied Addressing

1. Immediate Addressing:

 In immediate addressing mode, the data is specified in the instruction itself. The

data will be a part of the program instruction.

 EX. MVI B, 3EH - Move the data 3EH given in the instruction to B register; LXI

SP, 2700H.

2. Direct Addressing:

 In direct addressing mode, the address of the data is specified in the instruction.

The data will be in memory. In this addressing mode, the program instructions

and data can be stored in different memory.

 EX. LDA 1050H - Load the data available in memory location 1050H in to

accumulator; SHLD 3000H

 19

3. Register Addressing:

 In register addressing mode, the instruction specifies the name of the register in

which the data is available.

 EX. MOV A, B - Move the content of B register to A register; SPHL; ADD C.

4. Register Indirect Addressing:

 In register indirect addressing mode, the instruction specifies the name of the

register in which the address of the data is available. Here the data will be in

memory and the address will be in the register pair.

 EX. MOV A, M - The memory data addressed by H L pair is moved to A register.

LDAX B.

5. Implied Addressing:

 In implied addressing mode, the instruction itself specifies the data to be operated.

 EX. CMA - Complement the content of accumulator; RAL

 20

Store 8-bit data in memory

Program 1:

 MVI A, 52H : "Store 32H in the accumulator"

 STA 4000H : "Copy accumulator contents at address 4000H"

 HLT : "Terminate program execution"

Program 2:

 LXI H : "Load HL with 4000H"

 MVI M : "Store 32H in memory location pointed by HL register pair (4000H)"

 HLT : "Terminate program execution"

Note: The result of both programs will be the same. In program 1 direct addressing

instruction is used, whereas in program 2 indirect addressing instruction is used.

Exchange the contents of memory locations

Statement: Exchange the contents of memory locations 2000H and 4000H.

Program 1

 LDA 2000H : "Get the contents of memory location 2000H into accumulator"

 MOV B, A : "Save the contents into B register"

 LDA 4000H : "Get the contents of memory location 4000Hinto accumulator"

 STA 2000H : "Store the contents of accumulator at address 2000H"

 MOV A, B : "Get the saved contents back into A register"

 STA 4000H : "Store the contents of accumulator at address 4000H"

 21

Program 2

 LXI H 2000H : "Initialize HL register pair as a pointer to memory location

2000H."

 LXI D 4000H : "Initialize DE register pair as a pointer to memory location

4000H."

 MOV B, M : "Get the contents of memory location 2000H into B

register."

 LDAX D : "Get the contents of memory location 4000H into A register."

 MOV M, A : "Store the contents of A register into memory location

2000H."

 MOV A, B : "Copy the contents of B register into accumulator."

 STAX D : "Store the contents of A register into memory location

4000H."

 HLT : "Terminate program execution."

Note: In Program 1, direct addressing instructions are used, whereas in Program 2,

indirect addressing instructions are used.

Add two 8-bit numbers

Statement: Add the contents of memory locations 4000H and 4001H and place the result

in memory location 4002H.

 (4000H) = 14H

 (4001H) = 89H

 Result = 14H + 89H = 9DH

 22

 LXI H 4000H : "HL points 4000H"

 MOV A, M : "Get first operand"

 INX H : "HL points 4001H"

 ADD M : "Add second operand"

 INX H : "HL points 4002H"

 MOV M, A : "Store result at 4002H"

 HLT : "Terminate program execution"

Subtract two 8-bit numbers

Statement: Subtract the contents of memory location 4001H from the memory location

2000H and place the result in memory location 4002H.

 Program –: Subtract two 8-bit numbers

 (4000H) = 51H

 (4001H) = 19H

 Result = 51H – 19H = 38H

 LXI H, 4000H : "HL points 4000H"

 MOV A, M : "Get first operand"

 INX H : "HL points 4001H"

 SUB M : "Subtract second operand"

 INX H : "HL points 4002H"

 MOV M, A : "Store result at 4002H"

 HLT : "Terminate program execution"

 23

Add two 16-bit numbers

Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit

number in memory locations 4002H and 4003H. The most significant eight bits of the

two numbers to be added are in memory locations 4001H and 4003H. Store the result in

memory locations 4004H and 4005H with the most significant byte in memory location

4005H.

 (4000H) = 15H

 (4001H) = 1CH

 (4002H) = B7H

 (4003H) = 5AH

 Result = 1C15 + 5AB7H = 76CCH

 (4004H) = CCH

 (4005H) = 76H

1. Source Program 1:

2. LHLD 4000H : "Get first I6-bit number in HL"

3. XCHG : "Save first I6-bit number in DE"

4. LHLD 4002H : "Get second I6-bit number in HL"

5. MOV A, E : "Get lower byte of the first number"

6. ADD L : "Add lower byte of the second number"

7. MOV L, A : "Store result in L register"

8. MOV A, D : "Get higher byte of the first number"

9. ADC H : "Add higher byte of the second number with CARRY"

10. MOV H, A : "Store result in H register"

11. SHLD 4004H : "Store I6-bit result in memory locations 4004H and 4005H"

 24

12. HLT : "Terminate program execution"

1. Source program 2:

2. LHLD 4000H : Get first I6-bit number

3. XCHG : Save first I6-bit number in DE

4. LHLD 4002H : Get second I6-bit number in HL

5. DAD D : Add DE and HL

6. SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

7. HLT : Terminate program execution

NOTE: In program 1, eight bit addition instructions are used (ADD and ADC) and

addition is performed in two steps. First lower byte addition using ADD instruction and

then higher byte addition using ADC instruction.In program 2, 16-bit addition instruction

(DAD) is used.

Add contents of two memory locations

Statement: Add the contents of memory locations 40001H and 4001H and place the result

in the memory locations 4002Hand 4003H.

 Sample problem:

 (4000H) = 7FH

 (400lH) = 89H

 Result = 7FH + 89H = lO8H

 (4002H) = 08H

 (4003H) = 0lH

1. Source program:

2. LXI H, 4000H : "HL Points 4000H"

3. MOV A, M : "Get first operand"

4. INX H : "HL Points 4001H"

5. ADD M : "Add second operand"

 25

6. INX H : "HL Points 4002H"

7. MOV M, A : "Store the lower byte of result at 4002H"

8. MVIA, 00 : "Initialize higher byte result with 00H"

9. ADC A : "Add carry in the high byte result"

10. INX H : "HL Points 4003H"

11. MOV M, A : "Store the higher byte of result at 4003H"

12. HLT : "Terminate program execution"

Subtract two 16-bit numbers

Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the

16-bit number in memory locations 4000H and 4001H. The most significant eight bits of

the two numbers are in memory locations 4001H and 4003H. Store the result in memory

locations 4004H and 4005H with the most significant byte in memory location 4005H.

 Sample problem:

 (4000H) = 19H

 (400IH) = 6AH

 (4004H) = I5H (4003H) = 5CH

 Result = 6A19H – 5C15H = OE04H

 (4004H) = 04H

 (4005H) = OEH

1. Source program:

2. LHLD 4000H : "Get first 16-bit number in HL"

3. XCHG : "Save first 16-bit number in DE"

4. LHLD 4002H : "Get second 16-bit number in HL"

5. MOV A, E : "Get lower byte of the first number"

6. SUB L : "Subtract lower byte of the second number"

7. MOV L, A : "Store the result in L register"

 26

8. MOV A, D : "Get higher byte of the first number"

9. SBB H : "Subtract higher byte of second number with borrow"

10. MOV H, A : "Store l6-bit result in memory locations 4004H and 4005H"

11. SHLD 4004H : "Store l6-bit result in memory locations 4004H and 4005H"

12. HLT : "Terminate program execution"

Finding one’s complement of a number

Statement: Find the l‟s complement of the number stored at memory location 4400H and

store the complemented number at memory location 4300H.

 Sample problem:

 (4400H) = 55H

 Result = (4300B) = AAB

1. Source program:

2. LDA 4400B : "Get the number"

3. CMA : "Complement number"

4. STA 4300H : "Store the result"

5. HLT : "Terminate program execution"

Finding Two’s complement of a number

Statement: Find the 2′s complement of the number stored at memory location 4200H and

store the complemented number at memory location 4300H

 Sample problem:

 (4200H) = 55H

 Result = (4300H) = AAH + 1 = ABH

 27

1. Source program:

2. LDA 4200H : "Get the number"

3. CMA : "Complement the number"

4. ADI, 01 H : "Add one in the number"

5. STA 4300H : "Store the result"

6. HLT : "Terminate program execution"

Pack the unpacked BCD numbers

Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and

4201H and store result in memory location 4300H. Assume the least significant digit is

stored at 4200H.

 Sample problem:

 (4200H) = 04

 (4201H) = 09

 Result = (4300H) = 94

1. Source program:

2. LDA 4201H : "Get the Most significant BCD digit"

3. RLC

4. RLC

5. RLC

6. RLC : "Adjust the position of the second digit (09 is changed to 90)"

7. ANI FOH : "Make least significant BCD digit zero"

8. MOV C, A : "store the partial result"

9. LDA 4200H : "Get the lower BCD digit"

10. ADD C : "Add lower BCD digit"

11. STA 4300H : "Store the result"

12. HLT : "Terminate program execution"

 28

Unpack a BCD number

Statement: Two digit BCD number is stored in memory location 4200H. Unpack the

BCD number and store the two digits in memory locations 4300H and 4301H such that

memory location 4300H will have lower BCD digit.

 Sample problem:

 (4200H) = 58

 Result = (4300H) = 08 and

 (4301H) = 05

1. Source program:

2. LDA 4200H : "Get the packed BCD number"

3. ANI FOH : "Mask lower nibble"

4. RRC

5. RRC

6. RRC

7. RRC : "Adjust higher BCD digit as a lower digit"

8. STA 4301H : "Store the partial result"

9. LDA 4200H : "Get the original BCD number"

10. ANI OFH : "Mask higher nibble"

11. STA 4201H : "Store the result"

12. HLT : "Terminate program execution"

Execution format of instructions

Statement: Read the program given below and state the contents of all registers after the

execution of each instruction in sequence.

1. Main program:

 29

2. 4000H LXI SP, 27FFH

3. 4003H LXI H, 2000H

4. 4006H LXI B, 1020H

5. 4009H CALL SUB

6. 400CH HLT

7. Subroutine program:

8. 4100H SUB: PUSH B

9. 4101H PUSH H

10. 4102H LXI B, 4080H

11. 4105H LXI H, 4090H

12. 4108H SHLD 2200H

13. 4109H DAD B

14. 410CH POP H

15. 410DH POP B

16. 410EH RET

Right shift, bit of data(8 bit and 16 bit)

Statement: Write a program to shift an eight bit data four bits right. Assume data is in

register C.

 Sample problem:

 (4200H) = 58

 Result = (4300H) = 08 and

 (4301H) = 05

1.

2. Source program 1:

3. MOV A, C

4. RAR

5. RAR

 30

6. RAR

7. RAR

8. MOV C, A

9. HLT

Statement: Write a program to shift a 16 bit data, 1 bit right. Assume that data is in BC

register pair.

1. Source program 2

2. MOV A, B

3. RAR

4. MOV B, A

5. MOV A, C

6. RAR

7. MOV C, A

8. HLT

INSTRUCTION EXECUTION AND DATA FLOW IN 8085

The program instructions are stored in memory, which is an external device. To execute a

program in 8085, the starting address of the program should be loaded in program

counter. The 8085 output the content of program counter in address bus and asserts read

control signal low. Also, the program counter is incremented. T h e ad d re s s an d the

r ead co n t ro l s i gn a l en ab l e t h e m emo r y t o o u t pu t t h e co n t en t o f

m em o r y location on the data bus. Now the content of data bus is the opcode

of an instruction. The read control signal is made high by timing and control

unit after a specified time. At the rising edge of read control signals, the opcode is

latched into microprocessor internal bus and placed in instruction register. The

instruction-decoding unit, decodes the instructions and provides information

to timing and control unit to take further actions.

 31

INSTRUCTION FORMAT OF 8085

T h e 80 85 h av e 74 b a s i c i n s t r u c t i on s an d 24 6 t o t a l i n s t ru c t io ns . The

i ns t r u c t i on s e t o f 8 0 85 i s defined by the manufacturer Intel Corporation. Each

instruction of 8085 has 1 byte opcode. With 8 bit binary code, we can generate 256

different binary codes. In this, 246 codes have been used for opcodes.The size

of 8085 instructions can be 1 byte, 2 bytes or 3 bytes.

• The 1-byte instruction has an opcode alone.

• The 2 bytes instruction has an opcode followed by an eight-bit address or data.

• The 3 bytes instruction has an opcode followed by 16 bit address or data.

While storing the 3 bytes instruction in memory, the sequence of storage is, opcode first

followed by low byte of address or data and then high byte of address or data.

 32

Interrupts In 8085

What is Interrupt?

Interrupt is a mechanism by which an I/O or an instruction can suspend the normal

execution of processor and get itself serviced. Generally, a particular task is assigned to

that interrupt signal. In the microprocessor based system the interrupts are used for data

transfer between the peripheral devices and the microprocessor.

Interrupt Service Routine (ISR)

A small program or a routine that when executed services the corresponding interrupting

source is called as an ISR.

Maskable/Non-Maskable Interrupt

An interrupt that can be disabled by writing some instruction is known as Maskable

Interrupt otherwise it is called Non-Maskable Interrupt.

There are 6 pins available in 8085 for interrupt:

1. TRAP

2. RST 7.5

3. RST6.5

4. RST5.5

5. INTR

6. INTA

 33

Execution of Interrupts

When there is an interrupt requests to the Microprocessor then after accepting the

interrupts Microprocessor send the INTA (active low) signal to the peripheral. The

vectored address of particular interrupt is stored in program counter. The processor

executes an interrupt service routine (ISR) addressed in program counter.

There are two types of interrupts used in 8085 Microprocessor:

1. Hardware Interrupts

2. Software Interrupts

Software Interrupts

A software interrupts is a particular instructions that can be inserted into the desired

location in the rpogram. There are eight Software interrupts in 8085 Microprocessor.

From RST0 to RST7.

1. RST0

2. RST1

3. RST2

4. RST3

5. RST4

6. RST5

7. RST6

8. RST7

They allow the microprocessor to transfer program control from the main program to the

subroutine program. After completing the subroutine program, the program control

 34

returns back to the main program.

We can calculate the vector address of these interrupts using the formula given below:

Vector Address = Interrupt Number * 8

For Example:

RST2: vector address=2*8 = 16

RST1: vector address=1*8 = 08

RST3: vector address=3*8 = 24

Vector address table for the software interrupts:

Interrupt Vector Address

RST0

RST1

0000H

0008H

RST2

RST3

0010H

0018H

RST4

RST5

0020H

0028H

RST6

RST7

0030H

0038H

Hardware Interrupt

As it have already discussed that there are 6 interrupt pins in the microprocessor used as

Hardware Interrrupts given below:

1. TRAP

2. RST7.5

3. RST6.5

 35

4. RST5.5

5. INTR

Note:

INTA is not an interrupt. INTA is used by the

Microprocessor for sending the acknowledgement. TRAP has

highest priority and RST7.5 has second highest priority and

so on.

The Vector address of these interrupts is given below:

Interrupt Vector Address

RST7.5 003CH

RST6.5 0034H

RST5.5 002CH

TRAP 0024H

TRAP

It is non maskable edge and level triggered interrupt. TRAP has the highest priority and

vectores interrupt. Edge and level triggered means that the TRAP must go high and

remain high until it is acknowledged. In case of sudden power failure, it executes a ISR

and send the data from main memory to backup memory.

As we know that TRAP can not be masked but it can be delayed using HOLD signal.

This interrupt transfers the microprocessor's control to location 0024H.

TRAP interrupts can only be masked by resetting the microprocessor. There is no other

way to mask it.

 36

RST7.5

It has the second highest priority. It is maskable and edge level triggered interrupt. The

vector address of this interrupt is 003CH. Edge sensitive means input goes high and no

need to maintain high state until it is recognized.

It can also be reset or masked by resetting microprocessor. It can also be resettled by DI

instruction.

RST6.5 and RST5.5

These are level triggered and maskable interrupts. When RST6.5 pin is at logic 1, INTE

flip-flop is set. RST 6.5 has third highest priority and RST 5.5 has fourth highest priority.

It can be masked by giving DI and SIM instructions or by resetting microprocessor.

INTR

It is level triggered and maskable interrupt. The following sequence of events occurs

when INTR signal goes high:

1. The 8085 checks the status of INTR signal during execution of each instruction.

2. If INTR signal is high, then 8085 complete its current instruction and sends active

low interrupt acknowledge signal, if the interrupt is enabled.

3. On receiving the instruction, the 8085 save the address of next instruction on

stack and execute received instruction.

 37

DATA TRANSFER SCHEMES

A wide variety of IO devices having wide range of speed and other different

characteristics are available .A slow responding IO device cannot transfer data

when microprocessor issues instruction for it as it takes some time to get

Transfers rates ready. Of peripherals is usually slower than the transfer rates of

CPU. Operating modes of peripheral are different from each other and each must

be controlled so as not to disturb the operation of each other peripherals

connected to CPU.

Different types of data transfer techniques are available which can be broadly

divided into two categories:-

MICROPROCESSOR CONTROLLED :- HERE data transfer is controlled by

microprocessor. Microprocessor is primarily responsible for data transfer whether

from I/o to the CPU or to the memory or vice versa.

 DEVICE CONTROLLED:- Here data transfer is controlled by IO device . Data

is transferred in between IO device and memory without the intervention of CPU

such a transfer increases rate of transfer and makes the system more efficient

Here data transfer is controlled by microprocessor.

Microprocessor is primarily responsible for data transfer whether from I/o to the

CPU or to the memory or vice versa.

Program data transfer scheme:

Program data transfer scheme is controlled by the CPU. Data are transferred from

an IO device to the CPU or to the memory through CPU or vice versa under the

control of programs which are stored in memory. These programs are executed by

the CPU when an I/O device is ready to transfer data. The program data transfer

schemes are employed when small amount of data are to be transferred.

 38

Here also synchronous and asynchronous mode of transfer is used.

 Synchronous Data Transfer:-

Synchronous means „at the same time‟. The device Which sends data and the

device which received data are synchronized with the same clock. When the CPU

and IO devices match in speed, Synchronous Data Transfer technique is

employed. The data transfer with IO devices is performed by executing IN and

OUT instruction. The IN instruction is used to read data from an input device or

input port. The OUT instruction is used to sends data from CPU to the output

device or output port. As the CPU and the IO devices match in speed, the I/O

device is ready to transfer data when IN or OUT instruction is executes. The

status of the I/O device, whether it is ready or not, is not examined before the data

is transferred.

Asynchronous mode of transfer:-

Asynchronous means „at irregular intervals‟. In this method data transfer is not

based on predetermined timing pattern. This technique of data transfer is used

when the speed of an I/O device does not match the speed of the microprocessor.

In this technique the status of the I/O device i.e. whether the device is ready or

not, is checked by the microprocessor before the data are transferred. The

microprocessor initiates the I/O device to get ready and then continuously checks

the status of I/O device till the I/O device becomes ready to transfer data. When

I/O device becomes ready, the microprocessor executes instruction to transfer

data

 This mode of data transfer is also called handshaking mode of data transfer

because some signals are exchanged between microprocessor and I/O devices

before the actual data transfer takes place. Such signals are called handshake

signals.

The microprocessor is too busy. CPU is wasting time while checking the flag

instead of doing some useful work.

 39

The problem with programmed I/O is that CPU has to wait along time for the I/O

device to be ready for reception or transmission of data .The CPU while waiting,

must repeatedly interrogate the status of the I/O device. As a result the level of the

performance of the entire system is severely degraded. An alternative is

Interrupt driven IO data transfer:

In this scheme when the I/O device becomes ready to transfer data, it sends a high

signal to the microprocessor through a special input line called an interrupt line.

In other words it interrupts the normal processing sequence of the microprocessor.

On receiving interrupt the microprocessor completes the current instruction, saves

the contents of the program counter on stack first and then attends the I/O devices.

It takes up a subroutine called ISS (Interrupt Service Subroutine). It executes ISS

to transfer data from or to the I/O device. Different ISS are to be provided for

different IO devices. After completing the data transfer the microprocessor returns

back to the main program which it was executing before the interrupt occurred.

The normal operation of the microprocessor is It need to continue monitoring

for interrupt interrupted Signals.

DMA Data Transfer:

 The transfer of data between the mass storage device and a system memory is

often limited by the speed of microprocessor. Removing the microprocessor

during such a transfer and letting the peripheral manage the transfer to or from

memory would improve the speed of transfer and hence will make the system

more efficient. This transfer technique is called DMA Data Transfer.

 During DMA transfer microprocessor is idle, so it has no longer control on the

system buses. A DMA Controller takes over the buses and manage the transfer

directly between the peripheral and the memory It is fastest scheme then

Programmed Data Transfer Scheme and the microprocessor regains the control of

buses after data transfer

 40

PROGRAMMABLE PERIPHERAL INTERFACE

(8255)

The 8255 is a widely used, programmable, parallel I/O device.

• It can be programmed to transfer data under various conditions, from simple I/O to

interrupt I/O.

• It is flexible, versatile and economical and complex.

The 8255 has 24 I/O pins that can be grouped primarily into two 8 bit parallel ports: A

and B, with the remaining 8 bits a port C. The 8 bits of port C can be used as individual

bits or be grouped in two 4-bit ports: CUPPER (CU) and CLOWER (CL), as shown in

the figure 1.1. The functions of these ports are defined by writing a control word in the

control register.

Figure 1.2 shows all the functions of 8255; classified according to two modes: the Bit

Set/Reset (BSR) mode and I/O mode. The BSR mode is used to set or reset the bits in

port C. The I/O mode is further divided into three modes: Mode 0, Mode 1 and Mode 2.

In Mode 0, all ports function as simple I/O ports. Mode 1 is a hand shake mode whereby

 41

Ports A and/or B use bits from port C as handshake signals. In Mode 2 Port A can be set

up for bidirectional data transfer using handshaking signals from Port C, and Port B can

be set up either in Mode 0 or Mode 1.

Block Diagram of the 8255

CONTROL LOGIC

(Read): This control signal enables the Read operation. When the signal is low, the MPU

reads data fro a selected I/O Port of the 8255.

(Write): This control signal enables the write operation. When the signal goes low, MPU

writes into a selected I/O Port or control register.

RESET (Reset): This is an active high signal; it clears the control register and sets all

ports in the input mode.

 42

, A0 and A1: Theses are device select signals. Chip Select is connected to a decoded

address, and A0 and A1 are generally connected to MPU address lines A0 and A1

respectively

CONTROL WORD
Figure 1.5 shows a register called the control register. The contents of this register called

control word. This register can be accessed to write a control word when A0 and A1 are

at logic 1. This control register is not accessible for a read operation.

 Bit D7 of the control register specifies either I/O function or the Bit Set/Reset

function. If bit D7=1, bits D6-D0 determines I/O functions in various modes. If bit D7=0,

Port C operates in the Bit Set/Reset (BSR) mode. The BSR control word does not affect

the functions of Port A and Port B.

To communicate with peripherals through the 8255, three steps are necessary:

1. Determine the address of ports A, B and C and of the control register according to the

 43

chip select logic and address lines A0 andA1.

2. Write the control word in the control register.

3. Write I/O instructions to communicate with peripherals through Ports A, B and C.

Operating Modes

Mode 0: Simple Input or Output

In this mode, ports A, B are used as two simple 8-bit I/O ports and port C as two 4-bit

ports. Each port can be programmed to function as simply an input port or an output port.

The input/output features in Mode 0 are as follows.

1. Outputs are latched.

2. Inputs are not latched.

3. Ports don‟t have handshake or interrupt capability.

Mode 1: Input or Output with Handshake

In this mode, handshake signals are exchanged between the MPU and peripherals prior to

data transfer. The features of the mode include the following:

1. Two ports (A and B) function as 8-bit I/O ports. They can be configured as either as

input or output ports.

2. Each port uses three lines from ort C as handshake signals. The remaining two lines of

Port C can be used for simple I/O operations.

3. Input and Output data are latched.

4. Interrupt logic is supported.

Mode 2: Bidirectional Data Transfer

 44

This mode is used primarily in applications such as data transfer between two computers.

In this mode, Port A can be configured as the bidirectional port and Port B either in Mode

0 or Mode 1. Port A uses five signals from Port C as handshake signals for data transfer.

The remaining three signals from port C can be used either as simple I/O or as handshake

for port B.

BSR (Bit Set/Reset) Mode

The BSR mode is concerned only with the eight bits of port C, which can be set or reset

by writing an appropriate control word in the control register. A control word with bit D7

=0 is recognized as a BSR control word, and it does not alter any previously transmitted

control word with bit D7=1; thus the I/O operations of ports A and B are not affected by a

BSR control word. In BSR mode, individual bits of port C can be used for applications

such as an on/off switch. Ports A and B are not affected by the BSR Mode.

What s Microprocessor? Give the power supply & clock frequency of 8085?

Ans: A microprocessor is amultipurpose, programmable logic device that reads binary

instructions from a storage device called memory accepts binary data as input and

processes data according to those instructions and provides result as output. The power

supply of 8085 is +5V and clock frequency in 3MHz.

2. List few applications of microprocessor-based system.

Ans:

It is used:

i. For measurements, display

and control of current, voltage, temperature, pressure, etc.

ii. For traffic control and industrial tool control.

iii. For speed control of machines.

3. What are the functions of an accumulator?

 45

Ans: The accumulator is the register associated with the ALU operations and sometimes

I/O operations. It is an integral part of ALU. It holds one of data to be processed by ALU.

It also temporarily stores the result of the operation performed by the ALU.

4. List the 16 – bit registers of 8085 microprocessor.

Ans:Stack pointer (SP) and Program counter (PC).

5. List the allowed register pairs of8085.

Ans:

B-C register pair

D-E register pair

H-L register pair

6. Mention the purpose of SID and SOD lines

Ans: SID (Serial input data line): It is an input line through which the microprocessor

accepts serial data. SOD (Serial output data line): It is an output line through which the

microprocessor sends output serial data.

7. What is an Opcode?

Ans: The part of the instruction that specifies the operation to be performed is called the

operation code or opcode.

8. What is the function of IO/M signal in the 8085?

Ans: It is a status signal. It is used to differentiate between memory locations and I/O

operations. When this signal is low (IO/M = 0) it denotes the memory related operations.

When this signal is high (IO/M = 1) it denotes an I/O operation.

9. What is an Operand?

Ans: The data on which the operation is to be performed is called as an Operand.

10. How many operations are there in the instruction set of 8085 microprocessor?

Ans: There are 74 operations in the 8085 microprocessor.

 46

11. List out the five categories of the 8085 instructions. Give examples of the

instructions for each group.

Ans:

 Data transfer group – MOV, MVI, LXI.

 Arithmetic group – ADD, SUB, INR.

 Logical group –ANA, XRA, CMP.

 Branch group – JMP, JNZ, CALL.

 Stack I/O and Machine control group – PUSH, POP, IN, HLT.

12. Explain the difference between a JMP instruction and CALL instruction.

Ans: A JMP instruction permanently changes the program counter. A CALL instruction

leaves information on the stack so that the original program execution sequence can be

resumed.

13. Explain the purpose of the I/O instructions IN and OUT.

Ans: The IN instruction is used to move data from an I/O port into the accumulator. The

OUT instruction is used to move data from the accumulator to an I/O port. The IN &

OUT instructions are used only on microprocessor, which use a separate address space

for interfacing.

14. What is the difference between the shift and rotate instructions?

Ans: A rotate instruction is a closed loop instruction. That is, the data moved out at one

end is put back in at the other end. The shift instruction loses the data that is moved out of

the last bit locations.

15. How many address lines in a 4096 x 8 EPROM CHIP?

Ans: 12 address lines.

16. What are the Control signals used for DMA operation?

Ans:-HOLD & HLDA.

17. What is meant by Wait State?

Ans:-This state is used by slow peripheral devices. The peripheral devices can transfer

the data to or from the microprocessor by using READY input line. The microprocessor

remains in wait state as long as READY line is low. During the wait state, the contents of

the address, address/data and control buses are held constant.

 47

18. List the four instructions which control the interrupt structure of the 8085

microprocessor.

Ans:-

 DI (Disable Interrupts)

 EI (Enable Interrupts)

 RIM (Read Interrupt Masks)

 SIM (Set Interrupt Masks)

19. What is meant by polling?

Ans:-Polling or device polling is a process which identifies the device that has

interrupted the microprocessor.

20. What is meant by interrupt?

Ans:-Interrupt is an external signal that causes a microprocessor to jump to a specific

subroutine.

21. Explain priority interrupts of 8085.

Ans:-The 8085 microprocessor has five interrupt inputs. They are TRAP, RST 7.5, RST

6.5, RST 5.5, and INTR. These interrupts have a fixed priority of interrupt service. If two

or more interrupts go high at the same time, the 8085 will service them on priority basis.

The TRAP has the highest priority followed by RST 7.5, RST 6.5, RST 5.5. The priority

of interrupts in 8085 is shown in the table.

TRAP 1

RST 7.5 2

RST 6.5 3

RST 5.5 4

INTR 5

22. What is a microcomputer?

Ans:-A computer that is designed using a microprocessor as its CPU is called

microcomputer.

 48

23. What is the signal classification of 8085

Ans:-All the signals of 8085 can be classified into 6 groups

 Address bus

 Data bus

 Control and status signals

 Power supply and frequency signals

 Externally initiated signals

 Serial I/O ports

24. What are operations performed on data in 8085

Ans:- The various operations performed are

 Store 8-bit data

 Perform arithmetic and logical operations

 Test for conditions

 Sequence the execution of instructions

 Store data temporarily during execution in the defined R/W memory locations

called the stack

25. Steps involved to fetch a byte in 8085

Ans:-

i. The PC places the 16-bit memory address on the address bus ii. The control unit sends

the control signal RD to enable the memory chip iii. The byte from the memory location

is placed on the data bus iv. The byte is placed in the instruction decoder of the

microprocessor and the task is carried out according to the instruction

26. How many interrupts does 8085 have, mention them

Ans:-The 8085 has 5 interrupt signals; they are INTR, RST7.5, RST6.5, RST5.5 and

TRAP

27. Basic concepts in memory interfacing

 49

Ans:-The primary function of memory interfacing is that the microprocessor should be

able to read from and write into a given register of a memory chip. To perform these

operations the microprocessor should

 Be able to select the chip

 Identify the register

 Enable the appropriate buffer

28. Define instruction cycle, machine cycle and T-state

Ans:-Instruction cycle is defined, as the time required completing the execution of an

instruction. Machine cycle is defined as the time required completing one operation of

accessing memory, I/O or acknowledging an external request. Tcycle is defined as one

subdivision of the operation performed in one clock period

29. What is an instruction?

Ans:-An instruction is a binary pattern entered through an input device to command the

microprocessor to perform that specific function

30. What is the use of ALE?

Ans:-The ALE is used to latch the lower order address so that it can be available in T2

and T3 and used for identifying the memory address. During T1 the ALE goes high, the

latch is transparent ie, the output changes according to the input data, so the output of the

latch is the lower order address. When ALE goes low the lower order address is latched

until the next ALE.

31. How many machine cycles does 8085 have, mention them

Ans:The 8085 have seven machine cycles. They are

 Opcode fetch

 Memory read

 Memory write

 I/O read

 I/O write

 Interrupt acknowledge

 Bus idle

 50

32. Explain the signals HOLD, READY and SID

Ans:HOLD indicates that a peripheral such as DMA controller is requesting the use of

address bus, data bus and control bus. READY is used to delay the microprocessor read

or write cycles until a slow responding peripheral is ready to send or accept data.SID is

used to accept serial data bit by bit

33. Mention the categories of instruction and give two examples for each category.

Ans:The instructions of 8085 can be categorized into the following five categories

 Data transfer Instructions -MOV Rd,Rs STA 16-bit

 Arithmetic

Instructions -ADD R DCR M

 Logical

Instructions -XRI 8-bit RAR

 Branching

Instructions -JNZ CALL 16-bit

 Machine control Instructions -HLT NOP

34. Explain LDA, STA and DAA instructions

Ans:LDA copies the data byte into accumulator from the memory location specified by

the 16-bit address. STA copies the data byte from the accumulator in the memory

location specified by 16-bit address. DAA changes the contents of the accumulator from

binary to 4-bit BCD digits.

35. Explain the different instruction formats with examples

Ans:The instruction set is grouped into the following formats

 One byte instruction -MOV C,A

 Two byte instruction -MVI A,39H

 Three byte instruction -JMP 2345H

36. What is the use of addressing modes, mention the different types

 51

Ans:The various formats of specifying the operands are called addressing modes, it is

used to access the operands or data. The different types are as follows

 Immediate addressing

 Register addressing

 Direct addressing

 Indirect addressing

 Implicit addressing

37. What is the use of bi-directional buffers?

Ans:It is used to increase the driving capacity of the data bus. The data bus of a

microcomputer system is bi-directional, so it requires a buffer that allows the data to flow

in both directions.

38. Give the register organization of 8085

Ans:

W(8)
Temp.

Reg

Z(8)
Temp.

Reg

B(8) Register

C(8) Register

D(8) Register

E(8) Register

H(8) Register

L(8) Register

Stack Pointer (16)

Program

Counter
(16)

39. Define stack and explain stack related instructions

 52

Ans:The stack is a group of memory locations in the R/W memory that is used for the

temporary storage of binary information during the execution of the program. The stack

related instructions are PUSH & POP

40. Why do we use XRA A instruction

Ans:The XRA A instruction is used to clear the contents of the Accumulator and store

the value 00H.

41. Compare CALL and PUSH instructions

Ans:

CALL PUSH

1.When CALL is executed

the microprocessor

automatically stores

the 16-bit address of the

instruction next to CALL on

the stack.

2.When CALL is executed

the stack pointer is

decremented by

two

1.PUSH The programmer

uses the instruction to save

the contents

of the register pair on the

stack

2. When PUSH is executed

the stack pointer is

decremented

by two

42. What is Microcontroller and Microcomputer

Ans:Microcontroller is a device that includes microprocessor; memory and I/O signal

lines on a single chip, fabricated using VLSI technology. Microcomputer is a computer

 53

that is designed using microprocessor as its CPU. It includes microprocessor, memory

and I/O.

43. Define Flags

Ans:The flags are used to reflect the data conditions in the accumulator. The 8085 flags

are S-Sign flag, Z-Zero flag, AC-Auxiliary carry flag, P-Parity flag, CYCarry flag, D7

D6 D5 D4 D3 D2 D1 D0 44. How does the microprocessor differentiate between data

and instruction?

Ans:When the first m/c code of an instruction is fetched and decoded in the instruction

register, the microprocessor recognizes the number of bytes required to fetch the entire

instruction. For example MVI A, Data, the second byte is always considered as data. If

the data byte is omitted by mistake whatever is in that memory location will be

considered as data & the byte after the “data” will be treated as the next instruction.

45. Compare RET and POP

Ans:

RET POP

1.RET transfers the contents

of the top two locations of the

stack to

the PC

2.When RET is executed the

SP is incremented by two

3.Has 8 conditional RETURN

instructions

1.POP transfers the contents

of the top two locations of the

stack to

the specified register pair

2. When POP is executed the

SP is incremented by two

3.No conditional POP

instructions

46. What is assembler?

Ans:The assembler translates the assembly language program text which is given as input

to the assembler to their binary equivalents known as object code. The time required to

 54

translate the assembly code to object code is called access time. The assembler checks for

syntax errors & displays them before giving the object code.

47. What is loader?

Ans:The loader copies the program into the computer‟s main memory at load time and

begins the program execution at execution time.

48. What is linker?

Ans:A linker is a program used to join together several object files into one large object

file. For large programs it is more efficient to divide the large program modules into

smaller modules. Each module is individually written, tested & debugged. When all the

modules work they are linked together to form a large functioning program.

49. What is interrupt service routine?

Ans:Interrupt means to break the sequence of operation. While the CPU is executing a

program an interrupt breaks the normal sequence of execution of instructions & diverts

its execution to some other program. This program to which the control is transferred is

called the interrupt service routine. 50.What are the various programmed data

transfer methods?

Ans: i) Synchronous data transfer ii) Asynchronous data transfer iii) Interrupt driven data

transfer

51. What is synchronous data transfer?

Ans:It is a data method which is used when the I/O device and the microprocessor match

in speed. To transfer a data to or from the device, the user program issues a suitable

instruction addressing the device. The data transfer is completed at the end of the

execution of this instruction.

52. What is asynchronous data transfer?

Ans:It is a data transfer method which is used when the speed of an I/O device does not

match with the speed of the microprocessor. Asynchronous data transfer is also called as

Handshaking.

53. What are the basic modes of operation of 8255?

Ans: There are two basic modes of operation of 8255, They are:

1. I/O mode. 2. BSR mode.

 55

In I/O mode, the 8255 ports work as programmable I/O ports, while In BSR mode only

port C (PC0-PC7) can be used to set or reset its individual port bits. Under the IO mode

of operation, further there are three modes of operation of 8255, So as to support different

types of applications, viz. mode 0, mode 1 and mode 2.

 Mode 0 - Basic I/O mode

 Mode 1 - Strobed I/O mode

 Mode 2 - Strobed bi-directional I/O.

54. Write the features of mode 0 in 8255?

Ans:1. Two 8-bit ports (port A and port B) and two 4-bit ports (port C upper and lower)

are available. The two 4-bit ports can be combined used as a third 8-bit port. 2. Any port

can be used as an input or output port. 3.Output ports are latched. Input ports are not

latched. 4. A maximum of four ports are available so that overall 16 I/O configurations

are possible.

55. What are the features used mode 1 in 8255?

Ans:Two groups – group A and group B are available for strobed data transfer.

1. Each group contains one 8-bit data I/O port and one 4-bit control/data port. 2. The 8-bit

data port can be either used as input or output port. The inputs and outputs both are

latched. 3. Out of 8-bit port C, PC0-PC2 is used to generate control signals for port B and

PC3=PC5 are used to generate control signals for port A. The lines PC6, PC7 may be

used as independent data lines.

56. What are the signals used in input control signal & output control signal?

Ans: Input control signal

 STB (Strobe input)

 IBF (Input buffer full)

 INTR(Interrupt request)

Output control signal

 OBF (Output buffer full)

 ACK (Acknowledge input)

 56

 INTR(Interrupt request)

57. What are the features used mode 2 in 8255?

Ans:The single 8-bit port in-group A is available.

1. The 8-bit port is bi-directional and additionally a 5-bit control port is available. 2.

Three I/O lines are available at port C, viz PC2-PC0. 3. Inputs and outputs are both

latched. 4. The 5-bit control port C (PC3=PC7) is used for generating/accepting

handshake signals for the 8-bit data transfer on port A.

58. What are the modes of operations used in 8253?

Ans:Each of the three counters of 8253 can be operated in one of the following six modes

of operation.

1. Mode 0 (Interrupt on terminal count) 2. Mode 1 (Programmable monoshot) 3. Mode 2

(Rate generator) 4. Mode 3 (Square wave generator) 5. Mode 4 (Software triggered

strobe) 6. Mode 5 (Hardware triggered strobe)

59. What are the different types of write operations used in 8253?

Ans:There are two types of write operations in 8253

(1) Writing a control word register (2) Writing a count value into a count register

The control word register accepts data from the data buffer and initializes the counters, as

required. The control word register contents are used for

(a) Initializing the operating modes (mode 0-mode4) (b) Selection of counters (counter 0-

counter 2) (c) Choosing binary /BCD counters (d) Loading of the counter registers.

The mode control register is a write only register and the CPU cannot read its contents.

60. What is the function of mode set register in 8257?

Ans: The mode set register is used for programming the 8257 as per the requirements of

the system. The function of the mode set register is to enable the DMA channels

individually and also to set the various modes of operation.

61. What is interfacing?

Ans: An interface is a shared boundary between the devices which involves sharing

information. Interfacing is the process of making two different systems communicate

with each other.

62. List the operation modes of 8255

 57

Ans: a) I.O Mode

i. Mode 0-Simple Input/Output. ii. Mode 1-Strobed Input/Output (Handshake mode) iii.

Mode 2-Strobed bidirectional mode

b) Bit Set/Reset Mode.

63. What is a control word?

Ans: It is a word stored in a register (control register) used to control the operation of a

program digital device.

64. What is the purpose of control word written to control register in 8255?

Ans: The control words written to control register specify an I/O function for each I.O

port. The bit D7 of the control word determines either the I/O function of the BSR

function.

65. What is the size of ports in 8255?

Ans:

Port-A : 8-bits

Port-B : 8-bits

Port-CU : 4-bits

Port-CL : 4-bits

66. Distinguish between the memories mapped I/O peripheral I/O?

Ans:

Memory Mapped I/O Peripheral MappedI/O

16-bit device address 8-bit device address

Data transfer between any

general-purpose register and

I/O port.

Data is transfer only between

accumulator and I.O port

The memory map (64K) is

shared between I/O device

and system

memory.

The I/O map is independent of

the memory map; 256 input

device and 256

output device can be connected

More hardware is required to Less hardware is required to

 58

decode 16-bit address decode 8-bit address

Arithmetic or logic operation

can be directly performed

with I/O

data

Arithmetic or logical operation

cannot be directly performed

with I/O

data

67. What is memory mapping?

Ans: The assignment of memory addresses to various registers in a memory chip is called

as memory mapping.

68. What is I/O mapping?

Ans:The assignment of addresses to various I/O devices in the memory chip is called as

I/O mapping.

