Table of Contents

ISD4003 Series

Single-Chip Voice Record/Playback Devices 4-, 5-, 6-, and 8-Minute Durations

DETAILED DESCRIPTION Speech/Sound Quality Duration Flash Storage Microcontroller Interface Programming	· · · · · · · · · · · · ·	 	 	· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	 	1 1
PIN DESCRIPTIONS Voltage Inputs (V _{CCA} , V _C Ground Inputs (V _{SSA} , V _{SSE} Non-Inverting Analog Input Inverting Analog Input (A Audio Output (AUD OUT)	_{CD}))) put (ANA IN+ NA IN–))	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	 	
Slave Select (SS) Master Out Slave In (MOS Master In Slave Out (MISC Serial Clock (SCLK) Interrupt (INT) Row Address Clock (RAC External Clock Input (XCL AutoMute™ Feature (AM	SI)	· · · · · · · · · · · ·	· · · · · · · · · · ·			· · · · · · · · · · ·	· · · · · · · ·	4 4
SERIAL PERIPHERAL INTERFACE Message Cueing Power-Up Sequence SPI Port SPI Control Register	 		 			 		6 6
TIMING DIAGRAMS								
ORDERING INFORMATION								25

FIGURES, CHARTS, AND TABLES IN THE ISD4003 SERIES DATA SHEET

Figure 1:	ISD4003 Series TSOP and PDIP/SOIC Pinouts
Figure 2:	ISD4003 CSP Pinout
Figure 3:	ISD4003 Series ANA IN Modes
Figure 4:	SPI Port
Figure 5:	SPI Interface Simplified Block Diagram
Figure 6:	Timing Diagram
Figure 7:	8-Bit Command Format
Figure 8:	16-Bit Command Format
Figure 9:	Playback/Record and Stop Cycle
Figure 10:	Application Example Using SPI
Figure 11:	Application Example Using Microwire
Figure 12:	Application Example Using SPI Port on Microcontroller
Figure 13:	Application Example Using SPI with a Chip Scale Packaged Device
Figure 14:	28-Lead 8x13.4 mm Plastic Thin Small Outline Package (TSOP) Type I (E) 19
Figure 15:	28-Lead 0.600-Inch Plastic Dual Inline Package (PDIP) (P)
Figure 16:	28-Lead 0.300-Inch Plastic Small Outline Integrated Circuit (SOIC) (S)
Figure 17:	ISD4003 Series Bonding Physical Layout (Unpackaged Die)
Figure 18:	ISD4003 Chip Scale Package (CSP) (Z)
0	
Table 1:	External Clock Input Clocking Table
U U	
Table 1:	External Clock Input Clocking Table 5 Opcode Summary 6 SPI Control Register 7
Table 1: Table 2:	External Clock Input Clocking Table
Table 1: Table 2: Table 3:	External Clock Input Clocking Table 5 Opcode Summary 6 SPI Control Register 7
Table 1: Table 2: Table 3: Table 4:	External Clock Input Clocking Table 5 Opcode Summary 6 SPI Control Register 7 Absolute Maximum Ratings (Packaged Parts) 8
Table 1: Table 2: Table 3: Table 4: Table 5:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9
Table 1: Table 2: Table 3: Table 4: Table 5: Table 5: Table 6: Table 7: Table 8:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11
Table 1: Table 2: Table 3: Table 4: Table 5: Table 5: Table 6: Table 7: Table 8: Table 9:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11
Table 1: Table 2: Table 3: Table 4: Table 5: Table 5: Table 6: Table 7: Table 8: Table 8: Table 9: Table 10: Table 11:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11DC Parameters (Die)11AC Parameters (Die)11AC Parameters (Die)12
Table 1: Table 2: Table 3: Table 4: Table 5: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11DC Parameters (Die)11AC Parameters (Die)12SPI AC Parameters 113
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11DC Parameters (Die)11DC Parameters (Die)11AC Parameters (Die)12SPI AC Parameters 113Plastic Thin Small Outline Package (TSOP) Type I (E) Dimensions19
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 6: Table 7: Table 8: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11Operating Conditions (Die)11DC Parameters (Die)11AC Parameters (Die)12SPI AC Parameters (Die)12SPI AC Parameters 113Plastic Thin Small Outline Package (TSOP) Type I (E) Dimensions19Plastic Dual Inline Package (PDIP) (P) Dimensions20
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11DC Parameters (Die)11DC Parameters (Die)11AC Parameters (Die)12SPI AC Parameters 113Plastic Thin Small Outline Package (TSOP) Type I (E) Dimensions19
Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15:	External Clock Input Clocking Table5Opcode Summary6SPI Control Register7Absolute Maximum Ratings (Packaged Parts)8Operating Conditions (Packaged Parts)8DC Parameters (Packaged Parts)9AC Parameters (Packaged Parts)9Absolute Maximum Ratings (Die)11Operating Conditions (Die)11DC Parameters (Die)11DC Parameters (Die)11Parameters (Die)12SPI AC Parameters (Die)12SPI AC Parameters 113Plastic Thin Small Outline Package (TSOP) Type I (E) Dimensions19Plastic Dual Inline Package (PDIP) (P) Dimensions20Plastic Small Outline Integrated Circuit (SOIC) (S) Dimensions21

ISD4003 Series

Single-Chip Voice Record/Playback Devices 4-, 5-, 6-, and 8-Minute Durations

Advanced Information

GENERAL DESCRIPTION

The ISD4003 ChipCordef[®] Products provide highquality, 3-volt, single-chip Record/Playback solutions for 4- to 8-minute messaging applications which are ideal for cellular phones and other portable products. The CMOS-based devices include an on-chip oscillator, antialiasing filter, smoothing filter, AutoMute[™] feature, audio amplifier, and high density, multilevel Flash storage array. The ISD4003 series is designed to be used in a microprocessor- or microcontroller-based system. Address and control are accomplished through a Serial Peripheral Interface (SPI) or Microwire Serial Interface to minimize pin count. Recordings are stored in on-chip nonvolatile memory cells, providing zero-power message storage. This unique, single-chip solution is made possible through ISD's patented multilevel storage technology. Voice and audio signals are stored directly into memory in their natural form, providing high-quality, solid-state voice reproduction.

Figure: ISD4003 Series Block Diagram

FEATURES

- Single-chip voice Record/Playback solution
- Single +3 volt supply
- Low-power consumption
 - Operating current: I_{CC} Play = 15 mA (typical) I_{CC} Rec = 25 mA (typical)
 - Standby current: 1 μ A (typical)
- Single-chip durations of 4, 5, 6, and 8 minutes
- High-quality, natural voice/audio reproduction
- AutoMute feature provides background noise attenuation during periods of silence
- No algorithm development required
- Microcontroller SPI or Microwire[™] Serial Interface

- Fully addressable to handle multiple messages
- Nonvolatile message storage
- Power consumption controlled by SPI or Microwire control register
- 100-year message retention (typical)
- 100K record cycles (typical)
- On-chip clock source
- Available in die form, PDIP, SOIC, TSOP, and chip scale packaging (CSP)
- Extended temperature (-20°C to + 70°C) and industrial temperature (-40°C to +85°C) versions available

······								
Part Number	Duration (minutes)	Input Sample Rate (KHz)	Typical Filter Pass Band (KHz)					
ISD4003-04M	4.0	8.0	3.4					
ISD4003-05M	5.0	6.4	2.7					
ISD4003-06M	6.0	5.3	2.3					
ISD4003-08M	8.0	4.0	1.7					

Table: ISD4003 Series Summary

DETAILED DESCRIPTION

SPEECH/SOUND QUALITY

The ISD4003 ChipCorder series includes devices offered at 4.0, 5.3, 6.4, and 8.0 KHz sampling frequencies, allowing the user a choice of speech quality options. Increasing the duration within a product series decreases the sampling frequency and bandwidth, which affects sound quality. Please refer to the ISD4003 Series Product Summary table on the front page to compare filter pass band and product durations.

The speech samples are stored directly into on-chip nonvolatile memory without the digitization and compression associated with other solutions. Direct analog storage provides a natural sounding reproduction of voice, music, tones, and sound effects not available with most solid-state solutions.

DURATION

To meet end system requirements, the ISD4003 series products are single-chip solutions at 4, 5, 6, and 8 minutes.

FLASH STORAGE

One of the benefits of ISD's ChipCorder technology is the use of on-chip nonvolatile memory, which provides zero-power message storage. The message is retained for up to 100 years (typically) without power. In addition, the device can be re-recorded (typically) over 100,000 times.

MICROCONTROLLER INTERFACE

A four-wire (SCLK, MOSI, MISO, SS) SPI interface is provided for ISD4003 control and addressing functions. The ISD4003 is configured to operate as a peripheral slave device, with a microcontrollerbased SPI bus interface. Read/Write access to all the internal registers occurs through this SPI interface. An interrupt signal (INT) and internal readonly Status Register are provided for handshake purposes.

Figure 1: ISD4003 Series TSOP and PDIP/SOIC Pinouts

Figure 2: ISD4003 CSP Pinout

Name	Ball Location	TSOP Pin #
V _{SSA}	A2	18
AMCAP	A3	22
ANA IN+	A4	25
V _{SSA}	B 1	17
AUDOUT	B2	20
ANA IN-	B3	24
V _{CCA}	B 4	26
V _{SSD1}	C1	12
V _{SSD2}	C2	N/A
V _{CCD2}	C3	N/A

Name	Ball Location	TSOP Pin #
V _{SSA}	C4	1
MOSI	D1	10
SCLK	D2	8
XCLK	D3	6
RAC	D4	2
MISO	E1	11
SS	E2	9
V _{CCD1}	E3	7
INT	E4	5

PROGRAMMING

The ISD4003 series is also ideal for playback-only applications, where single or multiple message Playback is controlled through the SPI port. Once the desired message configuration is created, duplicates can easily be generated via an ISD programmer.

PIN DESCRIPTIONS

VOLTAGE INPUTS (V_{CCA}, V_{CCD})

To minimize noise, the analog and digital circuits in the ISD4003 devices use separate power busses. These +3 V busses are brought out to separate pins and should be tied together as close to the supply as possible. In addition, these supplies should be decoupled as close to the package as possible.

GROUND INPUTS (V_{SSA}, V_{SSD})

The ISD4003 series utilizes separate analog and digital ground busses. The analog ground (V_{SSA}) pins should be tied together as close to the package as possible and connected through a low-impedance path to power supply ground. The

digital ground (V_{SSD}) pin should be connected through a separate low-impedance path to power supply ground. These ground paths should be large enough to ensure that the impedance between the V_{SSA} pins and the V_{SSD} pin is less than 3 Ω . The backside of the die is connected to V_{SS} through the substrate resistance. In a chip-onboard design, the die attach area must be connected to V_{SS} or left floating.

NON-INVERTING ANALOG INPUT (ANA IN+)

This pin is the non-inverting analog input that transfers the signal to the device for recording. The analog input amplifier can be driven single ended or differentially. In the single-ended input mode, a 32 mVp-p (peak-to-peak) maximum signal should be capacitively connected to this pin for optimal signal quality. This capacitor value, together with the 3 K Ω input impedance of ANA IN+, is selected to give cutoff at the low frequency end of the voice passband. In the differential-input mode, the maximum input signal at ANA IN+ should be 16 mVp-p for optimal signal quality. The circuit connections for the two modes are shown in Figure 3 on page 3.

Figure 3: ISD4003 Series ANA IN Modes

INVERTING ANALOG INPUT (ANA IN-)

This pin is the inverting analog input that transfers the signal to the device for recording in the differential-input mode. In this differential-input mode, a 16 mVp-p maximum input signal at ANA INshould be capacitively coupled to this pin for optimal signal quality as shown in the ISD4003 Series ANA IN Modes, Figure 3. This capacitor value should be equal to the coupling capacitor used on the ANA IN+ pin. The input impedance at ANA INis nominally 56 K Ω . In the single-ended mode, ANA IN- should be capacitively coupled to V_{SSA} through a capacitor equal to that used on the ANA IN+ input.

AUDIO OUTPUT (AUD OUT)

This pin provides the audio output to the user. It is capable of driving a 5 K Ω impedance. It is recommended that this pin be AC coupled.

NOTE The AUDOUT pin is always at 1.2 volts when the device is powered up. When in playback, the output buffer connected to this pin can drive a load as small as 5 K Ω . When in record, a resistor connects AUD-OUT to the internal 1.2 volt analog ground supply. This resistor is approximately 850 K Ω , but will vary somewhat according to the sample rate of the device. This relatively high impedance allows this pin to be connected to an audio bus without loading it down.

SLAVE SELECT (SS)

This input, when LOW, will select the ISD4003 device.

MASTER OUT SLAVE IN (MOSI)

This is the serial input to the ISD4003 device. The master microcontroller places data on the MOSI line one half-cycle before the rising clock edge to be clocked in by the ISD4003 device.

MASTER IN SLAVE OUT (MISO)

This is the serial output of the ISD4003 device. This output goes into a high-impedance state if the device is not selected.

SERIAL CLOCK (SCLK)

This is the clock input to the ISD4003. It is generated by the master device (microcontroller) and is used to synchronize data transfers in and out of the device through the MISO and MOSI lines. Data is latched into the ISD4003 on the rising edge of SCLK and shifted out of the device on the falling edge of SCLK.

INTERRUPT (INT)

The ISD4003 interrupt pin goes LOW and stays LOW when an Overflow (OVF) or End of Message (EOM) marker is detected. This is an open drain output pin. Each operation that ends in an EOM or Overflow will generate an interrupt including the message cueing cycles. The interrupt will be cleared the next time an SPI cycle is initiated. The interrupt status can be read by an RINT instruction.

Overflow Flag (OVF)—The Overflow flag indicates that the end of the ISD4003's analog memory has been reached during a record or playback operation.

End of Message (EOM)—The End-of-Message flag is set only during playback operation when an EOM is found. There are eight EOM flag position options per row.

ROW ADDRESS CLOCK (RAC)

This is an open drain output pin that provides a signal with a 200 ms period at the 8 KHz sampling frequency. (This represents a single row of memory and there are 1200 rows of memory in the ISD4003 series devices.) This signal stays HIGH for 175 ms and stays LOW for 25 ms when it reaches the end of a row.

The RAC pin stays HIGH for 218.75 μ sec and stays LOW for 31.25 μ sec in Message Cueing mode (see page 6 for a more detailed description of Message Cueing). Refer to the AC Parameters table for RAC timing information on other sample rate products.

When a record command is first initiated, the RAC pin remains HIGH for an extra T_{RACLO} period. This is due to the need to load sample and hold circuits internal to the device. This pin can be used for message management techniques.

EXTERNAL CLOCK INPUT (XCLK)

The external clock input for the ISD4003 products has an internal pull-down device. These products are configured at the factory with an internal sampling clock frequency centered to ± 1 percent of specification. The frequency is then maintained to a variation of ± 2.25 percent over the entire commercial temperature and operating voltage ranges. The internal clock has a -6/+4 percent tolerance, over the extended temperature, industrial temperature and voltage ranges. A regulated power supply is recommended for industrial temperature range parts. If greater precision is required, the device can be clocked through the XCLK pin in Table 1.

Table 1:External Clock Input Clocking
Table

Part Number	Sample Rate	Required Clock
ISD4003-04M	8.0 KHz	1024 KHz
ISD4003-05M	6.4 KHz	819.2 KHz
ISD4003-06M	5.3 KHz	682.7 KHz
ISD4003-08M	4.0 KHz	512 KHz

These recommended clock rates should not be varied because the antialiasing and smoothing filters are fixed. Thus, aliasing problems can occur if the sample rate differs from the one recommended. The duty cycle on the input clock is not critical, as the clock is immediately divided by two internally. *If the XCLK is not used, this input should be connected to ground.*

AUTOMUTE™ FEATURE (AM CAP)

This pin is used in controlling the AutoMute feature. The AutoMute feature attenuates the signal when it drops below an internally set threshold. This helps to eliminate noise (with 6 dB of attenuation) when there is no signal (i.e., during periods of silence). A $1 \,\mu\text{F}$ capacitor to ground should be connected to the AMCAP pin. This capacitor becomes a part of an internal peak detector which senses the signal amplitude (peak). This peak level is compared to an internally set threshold to determine the Auto-Mute trip point. For large signals the AutoMute attenuation is set to 0 dB while 6 dB of attenuation occurs for silence. The 1 μ F capacitor also affects the rate at which the AutoMute feature changes with the signal amplitude (or the attack time). The Automute feature can be disabled by connecting the AMCAP pin to V_{CCA}

SERIAL PERIPHERAL INTERFACE (SPI) DESCRIPTION

The ISD4003 series operates from an SPI serial interface. The SPI interface operates with the following protocol.

The data transfer protocol assumes that the microcontroller's SPI shift registers are clocked on the falling edge of the SCLK. With the ISD4003, data is clocked in on the MOSI pin on the rising clock edge. Data is clocked out on the MISO pin on the falling clock edge.

- 1. All serial data transfers begin with the falling edge of \overline{SS} pin.
- 2. SS is held LOW during all serial communications and held HIGH between instructions.
- 3. Data is clocked in on the rising clock edge and data is clocked out on the falling clock edge.
- 4. Play and Record operations are initiated by enabling the device by asserting the <u>SS</u> pin LOW, shifting in an opcode and an address field to the ISD4003 device (refer to the Opcode Summary on the following page).
- 5. The opcodes and address fields are as follows: <5 control bits> and <11 address bits>.
- 6. Each operation that ends in an EOM or Overflow will generate an interrupt, including the Message Cueing cycles. The Interrupt will be cleared the next time an SPI cycle is initiated.
- 7. As Interrupt data is shifted out of the ISD4003 MISO pin, control and address data is simultaneously being shifted into the MOSI pin. Care should be taken such that the data shifted in is compatible with current system operation. It is possible to read interrupt data and start a new operation within the same SPI cycle.
- 8. An operation begins with the RUN bit set and ends with the RUN bit reset.
- 9. All operations begin with the rising edge of $\overline{\text{SS}}$.

MESSAGE CUEING

Message cueing allows the user to skip through messages, without knowing the actual physical location of the message. This operation is used during playback. In this mode, the messages are skipped 1600 times faster than in normal playback mode. It will stop when an EOM (end of message) marker is reached. Then, the internal address counter will point to the next message.

Instruction	Opcode <5 bits> Address <11 bits>	Operational Summary			
POWERUP	00100 <xxxxxxxxxxx></xxxxxxxxxxx>	Power-Up: Device will be ready for an operation after $T_{\mbox{PUD}}$			
SETPLAY	11100 <a10-a0></a10-a0>	Initiates Playback from address <a10-a0>,</a10-a0>			
PLAY	11110 <xxxxxxxxxxxx></xxxxxxxxxxxx>	Playback from the current address (until EOM or OVF).			
SETREC	10100 <a10-a0></a10-a0>	Initiates a Record operation from address <a10-a0>.</a10-a0>			
REC	10110 <xxxxxxxxxxx></xxxxxxxxxxx>	Records from current address until OVF is reached.			
SETMC	11101 <a10-a0></a10-a0>	Initiates Message Cueing (MC) from address <a10-a0>.</a10-a0>			
MC1	11111 <xxxxxxxxxxxx></xxxxxxxxxxxx>	Performs a Message Cue. Proceeds to the end of the current message (EOM) or enters OVF condition if no more messages are present.			
STOP	OX110 <xxxxxxxxxxxx< td=""><td>Stops current operation.</td></xxxxxxxxxxxx<>	Stops current operation.			
STOPPWRDN	0X01X <xxxxxxxxxxxx< td=""><td>Stops current Operation and enters stand-by (power-down) mode.</td></xxxxxxxxxxxx<>	Stops current Operation and enters stand-by (power-down) mode.			
RINT ²	0X110 <xxxxxxxxxxxx< td=""><td>Read Interrupt status bits: Overflow and EOM.</td></xxxxxxxxxxxx<>	Read Interrupt status bits: Overflow and EOM.			

Table 2: Opcode Summary

1. Message Cueing can be selected only at the beginning of a play operation.

2. As the Interrupt data is shifted out of the ISD4003, control and address data is being shifted in. Care should be taken such that the data shifted in is compatible with current system operation. It is possible to read interrupt data and start a new operation at the same time. See Figure 6 through Figure 9 for Opcode format.

POWER-UP SEQUENCE

The ISD4003 will be ready for an operation after T_{PUD} (25 ms approximately for 8 KHz sample rate). The user needs to wait T_{PUD} before issuing an operational command. For example, to play from address 00 the following programing cycle should be used.

Playback Mode

- 1. Send POWERUP command.
- 2. Wait T_{PUD} (power-up delay).
- 3. Send SETPLAY command with address 00.
- 4. Send PLAY command.

The device will start playback at address 00 and it will generate an interrupt when an EOM is reached. It will then stop playback.

Record Mode

- 1. Send POWERUP command.
- 2. Wait T_{PUD} (power-up delay).
- 3. Send POWERUP command.
- 4. Wait 2 x T_{PUD} (power-up delay).
- 5. Send SETREC command with address 00.
- 6. Send REC command.

The device will start recording at address 00 and it will generate an interrupt when an overflow is reached (end of memory array). It will then stop recording.

SPI PORT

The following diagram describes the SPI port and the control bits associated with it.

Figure 4: SPI Port

SPI CONTROL REGISTER

The SPI control register provides control of individual device functions such as Play, Record, Message Cueing, Power-Up and Power-Down, Start and Stop operations, and Ignore Address pointers.

Control Register	Bit	Device Function	Control Register	Bit	Device Function
RUN		Enable or Disable an operation	PU		Master power control
=	1 0	Start Stop	=	1 0	Power-Up Power-Down
P/R		Selects Play or Record operation	IAB ⁽¹⁾		Ignore address control bit
=	1 0	Play Record	=	1 0	Ignore input address register (A10–A0) Use the input address register contents for an operation (A10–A0)
MC		Enable or Disable Message Cueing	P10-P0		Output of the row pointer register
=	1 0	Enable Message Cueing Disable Message Cueing	A10-A0		Input address register

Table 3: SPI Control Register

 When IAB (Ignore Address Bit) is set to 0, a playback or record operation starts from address (A9-A0). For consecutive playback or record, IAB should be changed to a 1 before the end of that row (see RAC timing). Otherwise the ISD4003 will repeat the operation from the same row address. For memory management, the Row Address Clock (RAC) pin and IAB can be used to move around the memory segments.

Figure 5: SPI Interface Simplified Block Diagram

Table 4:Absolute Maximum Ratings
(Packaged Parts)⁽¹⁾

Condition	Value
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pin	$(V_{SS} - 0.3 V)$ to $(V_{CC} + 0.3 V)$
Voltage applied to any pin (Input current limited to ± 20 mA)	(V _{SS} – 1.0 V) to (V _{CC} + 1.0 V)
Voltage applied to MOSI, SCLK, and $\overline{\rm SS}$ pins (Input current limited to ± 20 mA)	(V _{SS} – 1,0 V) to (V _{CC} + 1,0 V)
Lead temperature (soldering – 10 seconds)	300°C
$V_{\rm CC} - V_{\rm SS}$	-0.3 V to +7.0 V

1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions.

Table 5:Operating Conditions
(Packaged Parts)

Condition	Value
Commercial operating temperature range ⁽¹⁾	0°C to +70°C
Extended operating temperature ⁽¹⁾	-20°C to +70°C
Industrial operating temperature ⁽¹⁾	-40°C to +85°C
Supply voltage $(V_{CC})^{(2)}$	+2.7 V to +3.3 V
Ground voltage $(V_{SS})^{(3)}$	0 V

1. Case temperature.

- $2. \quad V_{CC} = V_{CCA} = V_{CCD}.$
- $3. \quad V_{SS} = V_{SSA} = V_{SSD}.$

Symbol	Parameters	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units	Conditions
V _{IL}	Input Low Voltage			V _{CC} x 0,2	V	
V _{IH}	Input High Voltage	V _{CC} x 0,8			V	
V _{OL}	Output Low Voltage			0,4	V	$I_{OL} = 10 \mu A$
V _{OL1}	RAC, INT Output Low Voltage			0,4	V	I _{OL} = 1 mA
V _{OH}	Output High Voltage	$V_{\rm CC} - 0.4$			V	$I_{OH} = -10 \mu A$
	V _{CC} Current (Operating) — Playback — Record		15 25	30 40	mA mA	$R_{EXT} = \propto {}^{(3)}$ $R_{EXT} = \propto {}^{(3)}$
I _{SB}	V _{CC} Current (Standby)		1	10	μA	(3) (4)
IIL	Input Leakage Current			±1	μA	
I _{HZ}	MISO Tristate Current		1	10	μA	
R _{EXT}	Output Load Impedance	5			KΩ	
R _{ANA IN+}	ANA IN+ Input Resistance	2.2	3,0	3,8	KΩ	
R _{ANA IN-}	ANA IN- Input Resistance	40	56	71	KΩ	
A _{ARP}	ANA IN+ or ANA IN- to AUD OUT Gain		25		dB	(5)

Table 6: DC Parameters (Packaged Parts)

1. Typical values: $T_A = 25^{\circ}C$ and 3.0 V.

- 2. All min/max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested.
- 3. V_{CCA} and V_{CCD} connected together.
- **4.** $\overline{SS} = V_{CCA} = V_{CCD}$, $XCLK = MOSI = V_{SSA} = V_{SSD}$ and all other pins floating.
- 5. Measured with AutoMute feature disabled.

Symbol	Characte	eristic	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units	Conditions
F _S	Sampling Frequency	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		8.0 6.4 5.3 4.0		KHz KHz KHz KHz	(5) (5) (5) (5)
F _{CF}	Filter Pass Band	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		3.4 2.7 2.3 1.7		KHz KHz KHz KHz	3-dB Roll-Off Point ^{(3) (7)} 3-dB Roll-Off Point ^{(3) (7)} 3-dB Roll-Off Point ^{(3) (7)} 3-dB Roll-Off Point ^{(3) (7)}
T _{REC}	Record Duration	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		4 5 6 8		min min min min	(6) (6) (6) (6)

Table 7: AC Parameters (Packaged Parts)

Symbol	Characte	ristic	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units	Conditions
T _{PLAY}	Playback Duration	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		4 5 6 8		min min min min	(6) (6) (6) (6)
T _{PUD}	Power-Up Delay	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		25 31.25 37.5 50		msec msec msec msec	
T _{STOP} or T _{PAUSE}	Stop or Pause in Record or Play	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		50 62,5 75 100		msec msec msec msec	
T _{RAC}	RAC Clock Period	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		200 250 300 400		msec msec msec msec	(10) (10) (10) (10)
T _{RACLO}	RAC Clock Low Time	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		25 31.25 37.5 50		msec msec msec msec	
T _{RACM}	RAC Clock Period in Message Cueing Mode	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		125 156.3 187.5 250		μsec μsec μsec μsec	
T _{RACML}	RAC Clock Low Time in Message Cueing Mode	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		15.63 19.53 23.44 31.25		µsөс µsөс µsөс µsөс	
THD	Total Harmonic Dist	ortion		1	2	%	@ 1 KHz
V _{IN}	ANA IN Input Voltag	е			32	mV	Peak-to-Peak ^{(4) (8) (9)}

 Table 7: AC Parameters (Packaged Parts)

1. Typical values: $T_A = 25^{\circ}C$ and 3.0 V.

- 2. All min/max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested.
- 3. Low-frequency cut off depends upon the value of external capacitors (see Pin Descriptions).
- **4.** Single-ended input mode. In the differential input mode, $V_{\rm IN}$ maximum for ANA IN+ and ANA IN- is 16 mVp-p.
- 5. Sampling Frequency can vary as much as ± 2.25 percent over the commercial temperature, and voltage ranges, and -6/+4 percent over the extended temperature, industrial temperature and voltage ranges. For greater stability, an external clock can be utilized (see Pin Descriptions).
- 6. Playback and Record Duration can vary as much as ±2.25 percent over the commercial temperature and voltage ranges, and -4/+6 percent over the extended temperature, industrial temperature and voltage ranges. For greater stability, an external clock can be utilized (see Pin Descriptions).
- 7. Filter specification applies to the antialiasing filter and the smoothing filter. Therefore, from input to output, expect a 6dB drop by nature of passing through both filters.
- **8.** The typical output voltage will be approximately 570mVp-p with $V_{\rm IN}$ at 32mVp-p.
- 9. For optimal signal quality, this maximum limit is recommended.
- **10.** When a record command is sent, $I_{RAC} = I_{RAC} + I_{RACLO}$ on the first row addressed.

Table 8: Absolute Maximum Ratings (Die)⁽¹⁾

Condition	Value
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pad	(V _{SS} – 0.3 V) to (V _{CC} + 0.3 V)
Voltage applied to any pad (Input current limited to ± 20 mA)	(V _{SS} – 1.0 V) to (V _{CC} + 1.0 V)
Voltage applied to MOSI, SCLK, and \overline{SS} pins (Input current limited to ± 20 mA)	(V _{SS} – 1.0 V) to (V _{CC} + 1.0 V)
V _{CC} – V _{SS}	-0.3 V to +7.0 V

 Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions.

Table 9:Operating Conditions (Die)

Condition	Value
Commercial operating temperature range	0°C to +50°C
Supply voltage $(V_{CC})^{(1)}$	+2.7 V to +3.3 V
Ground voltage $(V_{SS})^{(2)}$	0 V

1. $V_{CC} = V_{CCA} = V_{CCD}$

 $2. \quad V_{SS} = V_{SSA} = V_{SSD}.$

Symbol	Parameters	Min ⁽²⁾	Тур ⁽¹⁾	Max ⁽²⁾	Units	Conditions
V _{IL}	Input Low Voltage			V _{CC} x 0,2	V	
V _{IH}	Input High Voltage	V _{CC} x 0,8			V	
V _{OL}	Output Low Voltage			0,4	V	I _{OL} = 10 μA
V _{OL1}	RAC, INT Output Low Voltage			0,4	V	I _{OL} = 1 mA
V _{OH}	Output High Voltage	$V_{\rm CC} - 0.4$			V	I _{OH} = -10 μA
I _{CC}	V _{CC} Current (Operating) — Playback — Record		15 25	30 40	mA mA	$R_{EXT} = \infty {}^{(3)}$ $R_{EXT} = \infty {}^{(3)}$
I _{SB}	V _{CC} Current (Standby)		1	10	μA	(3) (4)
I	Input Leakage Current			±1	μA	
I _{HZ}	MISO Tristate Current		1	10	μΑ	
R _{EXT}	Output Load Impedance	5			KΩ	
R _{ANA IN +}	ANA IN+ Input Resistance	2,2	3,0	3,8	KΩ	
R _{ANA IN-}	ANA IN- Input Resistance	40	56	71	KΩ	
A _{ARP}	ANA IN+ or ANA IN- to AUDOUT Gain		25		dB	(5)

Table 10: DC Parameters (Die)

1. Typical values: $T_A = 25^{\circ}C$ and 3.0 V.

- 2. All min/max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested.
- 3. V_{CCA} and V_{CCD} connected together.
- **4.** $\overline{SS} = V_{CCA} = V_{CCD}$, $XCLK = MOSI = V_{SSA} = V_{SSD}$ and all other pins floating.
- 5. Measured with AutoMute feature disabled.

Symbol	Characte	ristic	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units	Conditions
F _S	Sampling Frequency	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		8.0 6.4 5.3 4.0		KHz KHz KHz KHz	(5) (5) (5) (5)
F _{CF}	Filter Pass Band	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		3.4 2.7 2.3 1.7		KHz KHz KHz KHz	3dB Roll-Off Point ⁽³⁾ ⁽⁶⁾ 3dB Roll-Off Point ⁽³⁾ ⁽⁶⁾ 3dB Roll-Off Point ⁽³⁾ ⁽⁶⁾ 3dB Roll-Off Point ⁽³⁾ ⁽⁶⁾
T _{REC}	Record Duration	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		4 5 6 8		min min min min	(5) (5) (5) (5)
T _{PLAY}	Playback Duration	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		4 5 6 8		min min min min	(5) (5) (5) (5)
T _{PUD}	Power-Up Delay	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		25 31.25 37.5 50		msec msec msec msec	
T _{STOP} or T _{PAUSE}	Stop or Pause in Record or Play	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		50 62.5 75 100		msec msec msec msec	
T _{RAC}	RAC Clock Period	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		200 250 300 400		msec msec msec msec	(9) (9) (9) (9)
T _{RACLO}	RAC Clock Low Time	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		25 31.25 37.5 50		msec msec msec msec	
T _{RACM}	RAC Clock Period in Message Cueing Mode	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		125 156.3 187.5 250		µsec µsec µsec µsec	
T _{RACML}	RAC Clock Low Time in Message Cueing Mode	ISD4003-04M ISD4003-05M ISD4003-06M ISD4003-08M		15.63 19.53 23.44 31.25		µѕөс µѕөс µѕөс µѕөс	

 Table 11: AC Parameters (Die)

Symbol	Characteristic	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units	Conditions
THD	Total Harmonic Distortion		1	2	%	@ 1 KHz
V _{IN}	ANA IN Input Voltage			32	mV	Peak-to-Peak ^{4,7,8}

Table 11: AC Parameters (Die)

- **1.** Typical values: $T_A = 25^{\circ}C$ and 3.0 V.
- 2. All min/max limits are guaranteed by ISD via electrical testing or characterization. Not all specifications are 100 percent tested.
- 3. Low-frequency cut off depends upon the value of external capacitors (see Pin Descriptions).
- **4.** Single-ended input mode. In the differential input mode, $V_{\rm IN}$ maximum for ANA IN+ and ANA IN- is 16 mV peakto-peak.
- **5.** Sampling Frequency and Duration can vary as much as ± 2.25 percent over the commercial temperature and voltage ranges. For greater stability, an external clock can be utilized (see Pin Descriptions).
- 6. Filter specification applies to the antialiasing filter and to the smoothing filter.
- 7. The typical output voltage will be approximately 570 mV peak-to-peak with V_{IN} at 32 mV peak-to-peak.
- 8. For optimal signal quality, this maximum limit is recommended.
- 9. When a record command is sent, $T_{RAC} = T_{RAC} + T_{RACLO}$ on the first row addressed.

Symbol	Characteristics	Min	Мах	Units	Conditions
T _{SSS}	SS Setup Time	500		nsec	
T _{SSH}	SS Hold Time	500		nsec	
T _{DIS}	Data in Setup Time	200		nsec	
T _{DIH}	Data in Hold Time	200		nsec	
T _{PD}	Output Delay		500	nsec	
T _{DF} ⁽²⁾	Output Delay to hiZ		500	nsec	
T _{SSmin}	SS HIGH	1		µsec	
T _{SCKhi}	SCLK High Time	400		nsec	
T _{SCKlow}	SCLK Low Time	400		nsec	
F _O	CLK Frequency		1,000	KHz	

Table 12: SPI AC Parameters¹

1. Typical values: T_A = 25°C and 3.0 V. Timing measured at 50 percent of the V_{CC} level.

2. Tristate test condition.

TIMING DIAGRAMS

Figure 9: Playback/Record and Stop Cycle

Figure 10: Application Example Using SPI⁽¹⁾

- **1.** This application example is for illustration purposes only. ISD makes no representation or warranty that such application will be suitable for production.
- 2. Please make sure the bypass capacitor, C2 is as close as possible to the package.

Figure 11: Application Example Using Microwire⁽¹⁾

- 1. This application example is for illustration purposes only. ISD makes no representation or warranty that such application will be suitable for production.
- 2. Please make sure the bypass capacitor, C2 is as close as possible to the package.

Figure 12: Application Example Using SPI Port on Microcontroller⁽¹⁾

- **1.** This application example is for illustration purposes only. ISD makes no representation or warranty that such application will be suitable for production.
- 2. Please make sure the bypass capacitor, C2 is as close as possible to the package.

Figure 13: Application Example Using SPI with a Chip Scale Packaged Device

- **1.** This application example is for illustration purposes only. ISD makes no representation or warranty that such application will be suitable for production.
- 2. Please make sure all bypass capacitors are as close as possible to the package.
- 3. Ground plane must be used to connect all V_{SSA} pins together. If a ground plane is not available then a short and low impedance path is necessary.
- **4.** Route ANA IN+ and ANA IN- away from V_{CCD} and V_{SSD} return paths.
- 5. Biasing for electret microphone must come from $V_{\mbox{\tiny CCA}}$ and $V_{\mbox{\tiny SSA}}$
- **6.** AMCAP must return to V_{SSA} .
- 7. Traces from V_{CCD2} to the LDO (Low Dropout regulator) and from V_{SSD2} to the LDO ground should be as thick as possible. The distance between these two traces should be as short as possible.

DEVICE PHYSICAL DIMENSIONS

Figure 14: 28-Lead 8x13.4 mm Plastic Thin Small Outline Package (TSOP) Type I (E)

	INCHES			MILLIMETERS			
	Min	Nom	Мах	Min	Nom	Max	
А	0.520	0.528	0.535	13.20	13.40	13,60	
В	0,461	0,465	0,469	11,70	11,80	11,90	
С	0,311	0,315	0,319	7,90	8,00	8,10	
D	0,002		0,006	0,05		0,15	
E	0,007	0,009	0,011	0,17	0.22	0,27	
F		0,0217			0,55		
G	0,037	0,039	0,041	0,95	1,00	1,05	
Н	0°	3°	6°	0°	3°	6°	
	0.020	0,022	0,028	0,50	0,55	0,70	
J	0,004		0,008	0,10		0,21	

Table 13: Plastic Thin Small Outline Package (TSOP) Type I (E) Dimensions

NOTE: Lead coplanarity to be within 0.004 inches.

	INCHES			MILLIMETERS		
	Min	Nom	Мах	Min	Nom	Мах
А	1,445	1,450	1,455	36.70	36.83	36.96
B1		0,150			3,81	
B2	0,065	0,070	0,075	1,65	1,78	1,91
C1	0,600		0,625	15.24		15,88
C2	0,530	0,540	0,550	13,46	13.72	13,97
D			0,19			4,83
D1	0,015			0,38		
E	0,125		0,135	3,18		3,43
F	0.015	0,018	0,022	0,38	0,46	0,56
G	0.055	0,060	0,065	1,40	1,52	1,65
Н		0,100			2,54	
J	0,008	0,010	0,012	0,20	0.25	0.30
S	0,070	0,075	0,080	1,78	1,91	2.03
q	0°		15°	0°		15°

Table 15: Plastic Small Outline Integrated Circuit (SOIC) (S) Dimensions

	INCHES			MILLIMETERS		
	Min	Nom	Мах	Min	Nom	Max
А	0,701	0,706	0,711	17,81	17.93	18,06
В	0,097	0,101	0,104	2,46	2,56	2,64
С	0,292	0,296	0,299	7,42	7,52	7,59
D	0,005	0,009	0,0115	0,127	0.22	0,29
E	0,014	0,016	0,019	0,35	0.41	0,48
F		0.050			1,27	
G	0,400	0,406	0,410	10,16	10.31	10,41
Н	0,024	0.032	0,040	0,61	0.81	1,02

NOTE: Lead coplanarity to be within 0.004 inches.

Figure 17: ISD4003 Series Bonding Physical Layout¹ (Unpackaged Die)

- 1. The backside of die is internally connected to V_{SS} . If **MUST NOT** be connected to any other potential or damage may occur.
- 2. Double bond recommended.
- 3. This figure reflects the current die thickness. Please contact ISD as this thickness may change in the future.

Pin	Pin Name	X Axis	Y Axis
V _{SSA}	V_{SS} Analog Power Supply	-1898.1	-3272.4
V _{SSA}	V _{SS} Analog Power Supply	-1599,9	-3272.4
AUD OUT	Audio Output	281,9	-3272.4
AMCAP	AutoMute	577.3	-3272.4
ANA IN -	Inverting Analog Input	1449.3	-3272.4
ANA IN +	Noninverting Analog Input	1603.5	-3272.4
V _{CCA} ⁽¹⁾	V _{CC} Analog Power Supply	1898.7	-3272.4
V _{SSA}	V _{SS} Analog Power Supply	1885,2	3273.7
RAC	Row Address Clock	1483.8	3273.7
INT	Interrupt	794,8	3273.7
XCLK	External Clock Input	564,8	3273.7
V _{CCD2}	V _{CC} Digital Power Supply	384,9	3273.7
V _{CCD1}	V _{CC} Digital Power Supply	169.5	3273.7
SCLK	Slave Clock	-14.7	3273.7
SS	Slave Select	-198.1	3273.7
MOSI	Master Out Slave In	-1063.7	3273.7
MISO	Master In Slave Out	-1325.6	3273.7
V _{SSD1}	V _{SS} Digital Power Supply	-1665,3	3273.7
V _{SSD2}	V _{SS} Digital Power Supply	-1836.9	3273.7

Table 16: ISD4003 Series Device Pin/Pad Designations, with Respect to Die Center (µm)

1. Double bond recommended.

Figure 18: ISD4003 Chip Scale Package (CSP) (Z)

Table	17:	CSP Dimensions	5
Iabio			•

Symbol	Min.	Nom.	Max.
А	—	—	0,85
Al	0,15	_	_
A ²	—	0,55	_
b	0,30	0.35	0,40
С	_	4,70	_
D	—	7,45	_
e		0,75	
F	_	2,25	_
G	_	1.22	_
Н	_	2,22	_
	—	3,00	_

Name	Ball Location	TSOP Pin #
V _{SSA}	A2	18
AMCAP	A3	22
ANAIN+	A4	25
V _{SSA}	B1	17
AUDOUT	B2	20
ANAIN-	B3	24
V _{CCA}	B4	26
V _{SSD1}	C1	12
V _{SSD2}	C2	N/A
V _{CCD2}	C3	N/A
V _{SSA}	C4	1
MOS	DI	10
SCLK	D2	8
XCLK	D3	6
RAC	D4	2
MISO	E1	11
SS	E2	9
V _{CCD1}	E3	7
INT	E4	5

ORDERING INFORMATION

When ordering ISD4003 series devices, please refer to the following valid part numbers.

Part Number	Part Number	Part Number	Part Number
ISD4003-04ME	ISD4003-05ME	ISD4003-06ME	ISD4003-08ME
ISD4003-04MED	ISD4003-05MED	ISD4003-06MED	ISD4003-08MED
ISD4003-04MEI	ISD4003-05MEI	ISD4003-06MEI	ISD4003-08MEI
ISD4003-04MP	ISD4003-05MP	ISD4003-06MP	ISD4003-08MP
ISD4003-04MS	ISD4003-05MS	ISD4003-06MS	ISD4003-08MS
ISD4003-04MSI	ISD4003-05MSI	ISD4003-06MSI	ISD4003-08MSI
ISD4003-04MX	ISD4003-05MX	ISD4003-06MX	ISD4003-08MX
ISD4003-04MZ	ISD4003-05MZ	ISD4003-06MZ	ISD4003-08MZ
ISD4003-04MZD	ISD4003-05MZD	ISD4003-06MZD	ISD4003-08MZD
ISD4003-04MZI	ISD4003-05MZI	ISD4003-06MZI	ISD4003-08MZI

For the latest product information, access ISD's worldwide website at http://www.isd.com.