The KA2206B is a monolithic intergrated circuit consisting of a 2-channel power amplifier. It is suitable for stereo and bridge amplifier application of radio cassette tape recorder.

FEATURES

• High output power

Stereo : P_0 = 2.3W(Typ) at V_{CC} = 9V, R_L = 4 Ω . Bridge: $P_O = 4.7W$ (Typ) at $V_{CC} = 9V$, $R_L = 8\Omega$ • Low switching distortion at high frequency.

- Small shock noise at the time of power on/off due to a built-in muting circuit
- Good ripple rejection due to a built-in ripple filter.
- Good channel separation.
- Soft tone at the time of output saturation.
- Closed loop voltage gain fixed 45dB (Bridge : 51dB) but availability with external resistor added.
- Minimum number of external parts required.
- Easy to design radiator fin.

ORDERING INFORMATION

Device	Package	Operating Temperature
KS2206B	12-DIPH-300	-20°C ~ +70°C
KS22069BN	16-DIP-300A	

BLOCK DIAGRAM

Fig. 1

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit		
Supply Voltage	V _{cc}	15	V		
Power Dissipation	P_{D}	4*	W		
Operating Temperature	T_{OPR}	-20 ~ +70	°C		
Storage Temperature	T _{STG}	-40 ~ + 150	°C		

^{*} Fin is soldering on the PCB

ELECTRICAL CHARACTERISTICS

(Ta = 25 $^{\circ}\mathrm{C},~V_{CC}$ = 9V, f = 1KHz R_{G} = 600 $\Omega,$ unless otherwise specified)

Characteristic	Symbol	Т	Min	Тур	Max	Unit	
Operating Supply Voltage	V _{CC}				9	11	V
Quiescent Circuit Current	I _{ccq}	V _i = 0, Stereo			40	55	mA
Closed Loop Voltage Gain	Gvc	Stereo	V _I = -45dBm	43	45	47	dB
		Bridge	1	49	51	53	dB
Channel Balance	СВ	Stereo		-1	0	+1	dB
		Stereo	$R_L=4\Omega$, THD = 10%,	1.7	2.3		W
Ouptut Power	Po		$R_L=8\Omega$, THD = 10%,		1.3		W
		Bridge	$R_L=8\Omega$, THD = 10%,		4.7		W
Total Harmonic Distortion	THD	Stereo	Po=250mW, $R_L = 4\Omega$		0.3	1.5	%
		Bridge			0.5		%
Input Resistance	Rı			21	30		ΚΩ
Ripple Rejection Ratio	RR	Stereo,R _G =0Ω, V _I =150mW		40	46		dB
		f=100Hz					
Output Noise Voltage	V _{NO}	Stereo, $R_G=0\Omega$			0.3	1.0	mW
		Stereo,R _G =10KΩ			0.5	2.0	mV
Cross Talk	СТ	Stereo,R _G =10KΩ, V _O =0dBm		40	55		dB

APPLICATION INFORMATION

1.Stereo application

- i) Fixed voltage gain (Pin 9 connected to GND directly)
- $G_V = 20 \log \quad (d\frac{R_1}{R_2})$
- ii) Variable voltage gain (Rf and C₁ connected with pin 9)

$$G_V = 20 \log \frac{R_1}{R_2 + R_F}$$

2. Bridge application

i) Fixed voltage gain (Pin 9 connected to GND directly)

$$G_V = 20 \log + \frac{R_1}{R_2}B)$$

ii) Variable voltage gain $R_{\!F}$ and C_1 connected with pin 9)

$$G_V = 20 log R_1 R_2 + R_F$$

APPLICATION CIRCUIT

1. Stereo Amplifier

2. Bridge Amplifier

Fig. 3

12-DIPH-300

16-DIP-300A

