INTRODUCTION The KA2213 is a monolithic integrated circuit consisting of a preamplifier, ALC circuit, power amplifier in a 14-pin plastic dual in line package with heat sink. #### **FEATURES** - Suitable for the play and recording functions of mono cassette tape recorders. - Wide operating supply voltage range: $V_{CC} = 4V \sim 12V$ - High gain preamplifier and power amplifier. - Output power of power amplifier state $P_O = 1W$ at $V_{CC} = 6V$, $R_L = 4\Omega$, THD=10%. - Soft tone quality at the time of output saturation. - Wide ALC range and small variation in output voltage. - Small shock noise at the time of power on/off due to built-in prevention circuit. - Variable monitor capability due to recording amplifier consisting of preamplifier alone. - Minimum number of external parts required. #### **ORDERING INFORMATION** | Devi | се | Package | Operating Temperature | | | | |------|----|-------------|-----------------------|--|--|--| | KA22 | 13 | 14-DIPH-300 | -20°C~ +70°C | | | | #### **BLOCK DIAGRAM** Fig. 1. # **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Value | Unit | | | |-----------------------|------------------|---------------------|--------|--|--| | Supply Voltage | Vcc | 13 | V | | | | Power Dissipation | P_D | 1.2
2.25* | W
W | | | | Operating Temperature | T _{OPR} | - 20 ~ + 70 | °C | | | | Storage Temperature | T _{STG} | - 40 ~ + 150 | °C | | | ¹ Mounted and soldered on a 50mm x 50mm copper foil of PCB $\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} \\ (Ta = 25 ^{\circ}C, \ \mbox{Vcc} = 6\mbox{V}, \ \mbox{f} = 1\mbox{KHz}, \ \mbox{unless otherwise specified)} \\ \end{tabular}$ | Characteristic | Symbol | Test Conditions | Min | Тур | Max | Unit | | | |--------------------------------|----------------------|---|-----|-----|-----|------|--|--| | Quiescent Circuit Current | | $V_{CC} = 6V, V_{I} = 0$ | | 18 | 30 | mA | | | | Quiescent Circuit Current | I _{cca} | $V_{CC} = 9V, V_{I} = 0$ | | 23 | 40 | mA | | | | Pre Amplifier | | | | | | | | | | Open Loop Voltage Gain | G _{VO} | Open loop | | 85 | | dB | | | | Closed Loop Voltage Gain | G_{VC} | Closed loop, Play | | 40 | | dB | | | | Output Voltage | Vo | THD = 1%, Play | 0.9 | 1.2 | | V | | | | Input Resistance | Rı | | 21 | 30 | | ΚΩ | | | | Equivalent Input Noise Voltage | V_{NI} | Play | | 1.0 | 2.0 | μV | | | | ALC Input Level | V _{I (ALC)} | THD = 1%, Rec | -20 | -12 | | dBm | | | | Power Amplifier | | | | | | | | | | Closed Loop Voltage Gain | G_{VC} | $R_F = 51\Omega$ | 43 | 45 | 47 | dB | | | | | | $V_{CC} = 6V, R_L = 4\Omega, THD = 10\%$ | 0.7 | 1.0 | | W | | | | Output Power | Po | V_{CC} = 7.5V, R_L = 4Ω
THD = 10% | 1.0 | 1.5 | | W | | | | | | V_{CC} = 9V, R_L =4 Ω , THD=10% | 1.7 | 2.2 | | W | | | | Total Harmonic Distortion | THD | P _O = 250mW | | 0.3 | 1.5 | % | | | | Input Resistance | R _I | | | 30 | | ΚΩ | | | | Output Noise Voltage | V_{NO} | $R_G = 10K\Omega$ | | 0.6 | 1.8 | mV | | | | Ripple Rejection Ratio | RR | $R_G=0\Omega, V_R = 150mV, f = 100Hz$ | 40 | 45 | | dB | | | # TEST CIRCUIT Fig. 2 ### **TEST METHOD** | Chara | Characteristic SW | | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 | SW8 | Test
Point | Test Method | |-----------------|---------------------|---|-----|-----|-----|-----|-----|-----|-----|---------------|--| | | I _{CCQ} | | on | on | off | on | on | off | off | | Test circuit current | | _ | G _{VC} | 2 | off | off | off | on | on | off | off | A.D | G _{VC} = 20 log V _O /V _I (dB) | | lifie | Po | 2 | off | off | off | on | on | off | off | D | Test output voltage at THD = I0% | | Power Amplifier | THD | 2 | off | off | off | on | on | off | off | D | Test THD at output voltage V _O = 1V | | ver | V _{NO} | | on | off | off | on | on | off | off | D | Test output noise voltage | | Pov | RR | | on | off | off | on | on | off | off | D | $RR = 20 \log V_{RO}/150 \text{ (dB)}$ Test output ripple voltage (V _{RO}) | | | G _{VO} | 1 | off | off | on | off | on | off | off | A.B | G _{VO} =2o logV _O /V _I (dB) | | Pre-Amplifier | Vo | 1 | off | off | off | on | on | off | off | В | Test output voltage at THD=1% | | | V _{NI} | | off | on | off | on | on | on | off | O | Convert output noise voltage at R_G =2.2 $K\Omega$, V_{NI} = V_{NO}/G_V | | | V _{I(ALC)} | 1 | off | off | off | off | off | off | on | A.B | Test input voltage at THD = 1% | ### **TYPICAL APPLICATION CIRCUITS** # 1. Mono cassette tape recorder # 2. Radio cassette tape recorder # 14-DIPH-300