SPINDLE MOTOR DRIVER The KA3020D is a monolithic integrated circuit, suitable for a 3-phase spindle motor drive of a CD system. #### **FEATURES** - · 3-phase, full-wave, linear BLDC motor driver - · Power save at stop mode - Built-in current limiter - Built-in TSD (thermal shutdown) circuit - Built-in 3X or 1X hall FG output - · Built-in hall bias circuit - Built-in rotational direction detector - Built-in reverse rotation preventer - · Built-in short braker - Corresponds to 3.3 V or 5 V DSP ### **ORDERING INFORMATION** | Device | Package | Operating Temperature | |---------|--------------|-----------------------| | KA3020D | 28-SSOPH-375 | -25°C ~ +75 °C | ### **BLOCK DIAGRAM** ### **PIN CONFIGURATION** ## **PIN DESCRIPTIONS** | Pin no. | Symbol | I/O | Description | Pin no. | Symbol | I/O | Description | |---------|--------|-----|-------------------|---------|--------|-----|----------------------------------| | 1 | NC | - | No connection | 15 | VH | I | Hall bias | | 2 | А3 | 0 | Output (A3) | 16 | NC | - | No connection | | 3 | NC | - | No connection | 17 | PC1 | - | Phase compensation capacitor | | 4 | A2 | 0 | Output (A2) | 18 | SB | I | Short brake | | 5 | NC | - | No connection | 19 | FG3X | 0 | FG waveform (3X) | | 6 | NC | - | No connection | 20 | DIR | 0 | Rotational direction output | | 7 | A1 | 0 | Output (A1) | 21 | ECR | I | Output current control reference | | 8 | GND | - | Ground | 22 | EC | I | Output current control voltage | | 9 | H1+ | I | Hall signal (H1+) | 23 | S/S | I | Power save (Start/Stop switch) | | 10 | H1- | I | Hall signal (H1-) | 24 | FG1X | 0 | FG waveform (1X) | | 11 | H2+ | I | Hall signal (H2+) | 25 | VCC | - | Supply voltage (Signal) | | 12 | H2- | I | Hall signal (H2-) | 26 | NC | - | No connection | | 13 | H3+ | I | Hall signal (H3+) | 27 | VM | - | Supply voltage (Motor) | | 14 | H3- | I | Hall signal (H3-) | 28 | CS1 | - | Output current detection | ### **EQUIVALENT CIRCUITS** ## **ABSOLUTE MAXIMUM RATINGS** (TA=25°C) | Characteristics | Symbol | Value | Unit | |---------------------------------|--------------------|---------------------|------| | Maximum supply voltage (Signal) | V _{CCmax} | 7 | V | | Maximum supply voltage (Motor) | V _{Mmax} | 18 | V | | Power dissipation | P _d | 1.7 _{note} | W | | Maximum output current | I _{Omax} | 1.3 | A | | Operating temperature range | T _{opr} | -25 ~ +75 | °C | | Storage temperature range | T _{stg} | -55 ~ +150 | °C | Note: 1. When mounted on $50 \text{mm} \times 50 \text{ mm} \times 1 \text{mm}$ PCB (Phenolic resin material) - 2. Power dissipation is reduced 13.6 mV/°C for using above Ta=25°C - 3. Do not exceed Pd and SOA(Safe operating area). ## RECOMMENDED OPERATING CONDITIONS | Characteristics | Symbol | | Value | | Unit | |----------------------|----------------|------|-------|------|-------| | Grial acteristics | Syllibol | Min. | Тур. | Max. | Offic | | Supply Voltage | Vcc | 4.5 | 5 | 5.5 | V | | Motor Supply Voltage | V _M | 3.5 | 12 | 15 | V | ## **ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, Ta = 25 $^{\circ}$ C, Vcc=5 V, V_M=12 V) | Min. Typ. Max. | Characteristics | Cumbal | Condition | SPEC | | Unit | | |---|-------------------------------|--------|---------------------|------|------|------|------| | START/STOP On voltage range Vssoff Output driver ON 2.5 - Vcc V | Characteristics | Symbol | Condition | Min. | Тур. | Max. | Unit | | On voltage range Vsson Output driver ON 2.5 - Vcc V Off voltage range Vssoff Output driver OFF 0.0 - 1.0 V HALL BIAS Hall bias voltage Vhb Ihb=20 mA 0.4 1.0 1.8 V HALL AMP Hall bias current Iha - 0.5 2 uA Common-mode input range Vhar 1.5 - 4.0 V Minimum input level Vinh 60 - - mVg TORQUE CONTROL Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Ges Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecri | Quiescent circuit current | Icc | | 2 | 5 | 8 | mA | | Off voltage range Vssoff Output driver OFF 0.0 - 1.0 V HALL BIAS Hall bias voltage Vhb Ihb=20 mA 0.4 1.0 1.8 V HALL AMP Hall bias current Iha - 0.5 2 uA Common-mode input range Vhar 1.5 - 4.0 V Minimum input level Vinh 60 - - mVg TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ec=2.5 V -5 0.5 5 | START/STOP | • | | | • | | | | HALL BIAS Hall bias voltage | On voltage range | Vsson | Output driver ON | 2.5 | - | Vcc | V | | Hall bias voltage Vhb Ihb=20 mA 0.4 1.0 1.8 V HALL AMP Hall bias current Iha - 0.5 2 uA Common-mode input range Vhar 1.5 - 4.0 V Minimum input level Vinh 60 - - mVp TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 AA FG Output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V <td>Off voltage range</td> <td>Vssoff</td> <td>Output driver OFF</td> <td>0.0</td> <td>-</td> <td>1.0</td> <td>V</td> | Off voltage range | Vssoff | Output driver OFF | 0.0 | - | 1.0 | V | | HALL AMP Hall bias current Iha - 0.5 2 uA Common-mode input range Vhar 1.5 - 4.0 V Minimum input level Vinh 60 mVp TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 AV FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | HALL BIAS | | | | • | | | | Hall bias current Iha | Hall bias voltage | Vhb | Ihb=20 mA | 0.4 | 1.0 | 1.8 | V | | Common-mode input range Vhar 1.5 - 4.0 V Minimum input level Vinh 60 - - mVp TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG Output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | HALL AMP | | | | • | | | | Minimum input level Vinh 60 - - mVp TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Hall bias current | lha | | - | 0.5 | 2 | uA | | TORQUE CONTROL Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Common-mode input range | Vhar | | 1.5 | - | 4.0 | V | | Ecr Input voltage range Ecr 0.2 - 4.0 V Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG Output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Minimum input level | Vinh | | 60 | - | - | mVpp | | Ec Input voltage range Ec 0.2 - 4.0 V Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG Output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | TORQUE CONTROL | • | | | • | | | | Offset voltage (-) Ecoff- Ec=2.5 V -80 -50 -20 mV Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Ecr Input voltage range | Ecr | | 0.2 | - | 4.0 | V | | Offset voltage (+) Ecoff+ Ec=2.5 V 20 50 80 mV Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Ec Input voltage range | Ec | | 0.2 | - | 4.0 | V | | Ec Input current Ecin Ec=2.5 V -5 0.5 5 uA Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Offset voltage (-) | Ecoff- | Ec=2.5 V | -80 | -50 | -20 | mV | | Ecr Input current Ecrin Ecr=2.5 V -5 0.5 5 uA Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V FG FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Offset voltage (+) | Ecoff+ | Ec=2.5 V | 20 | 50 | 80 | mV | | Input/output gain Gec Ec=2.5 V, Rcs=0.5 Ω 0.41 0.51 0.61 A/V | Ec Input current | Ecin | Ec=2.5 V | -5 | 0.5 | 5 | uA | | FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Ecr Input current | Ecrin | Ecr=2.5 V | -5 | 0.5 | 5 | uA | | FG output voltage (H) Vfgh Ifg=-10 uA 3.0 - Vcc V | Input/output gain | Gec | Ec=2.5 V, Rcs=0.5 Ω | 0.41 | 0.51 | 0.61 | A/V | | | FG | | | | | | | | FG output voltage (L) Vfgl Ifg=10 uA 0.5 V | FG output voltage (H) | Vfgh | Ifg=-10 uA | 3.0 | - | Vcc | V | | | FG output voltage (L) | Vfgl | Ifg=10 uA | - | - | 0.5 | V | | Duty (reference value) - 50 - % | Duty (reference value) | | | - | 50 | - | % | | OUTPUT BLOCK | OUTPUT BLOCK | | | | · | ı | ı | | Saturation voltage (upper TR) Voh Io=-300 mA - 0.9 1.6 V | Saturation voltage (upper TR) | Voh | Io=-300 mA | - | 0.9 | 1.6 | V | | Saturation voltage (lower TR) Vol lo=300 mA - 0.2 0.6 V | Saturation voltage (lower TR) | Vol | Io=300 mA | - | 0.2 | 0.6 | V | | Torque limit current ItI Rcs=0.5 Ω 560 700 840 mA | Torque limit current | lti | Rcs=0.5 Ω | 560 | 700 | 840 | mA | | Characteristics | Symbol Condition | Condition | SPEC | | | Unit | |------------------------|------------------|------------|------|------|------|-------| | Cital acteristics | Symbol | Condition | Min. | Тур. | Max. | Offic | | DIRECTION DETECTOR | | | | | | | | DIR output voltage (H) | Vdirh | lfg=-10 uA | 3.0 | - | Vcc | V | | DIR output voltage (L) | Vdirl | lfg=10 uA | - | - | 0.5 | V | | SHORT BRAKE | | | | | | | | ON voltage range | Vsbon | | 3.5 | - | Vcc | V | | OFF voltage range | Vsboff | | 0 | - | 1.0 | V | #### APPLICATION INFORMATION #### 1. TORQUE CONTROL & OUTPUT CURRENT CONTROL - 1) By amplifying the voltage difference between Ec and Ecr from Servo IC, the Torque Sense AMP produces the input (V_{AMP}) for the Current Sense AMP. - 2) The output current (I_O) is converted into the voltage (V_{CS}) through the sense resistor (R_{CS}) and compared with the V_{AMP} . By the negative feedback loop, the sensed output voltage, VCS is equal to the input V_{AMP} . Therefore, the output current (I_O) is linearly controlled by the input V_{AMP} . - 3) As a result, the signals, E_C and E_{CR} can control the velocity of the Motor by controlling the output current (I_O) of the Driver. - 4)The range of the torque voltage is as shown below. | | Rotation | |----------------------|---------------------------------------| | E _{CR} > Ec | Forward rotation | | E _{CR} < Ec | Stop after detecting reverse rotation | The input range of E_{CR} , E_C is 0.2 V ~ 4 V #### 2.SHORT BRAKE | Pin # 18 | Short Brake | |----------|-------------| | HIGH | ON | | LOW | OFF | When the pick-up part moves from the inner to the outer spindle of the CD, the Brake function of the reverse voltage is commonly employed to decrease the rotating velocity of the Spindle Motor. However, if the Spindle Motor rotates rapidly, the Brake function of the reverse voltage may produce much heat at the Drive IC. To remove this shortcoming and to enhance the braking efficiency, the Short Brake function is added to KA3020D. When the Short Brake function is active, all upper Power TRs turn off and all lower Power TRs turn on, so as to make the rotating velocity of the Motor slow down. But FG and DIR functions continue to operate normally. #### 3. START/STOP (POWER SAVE) | Pin # 23 | Start/Stop | |----------|------------| | HIGH | OPERATE | | LOW | STOP | When Start/Stop function active, all Power TRs turn off but FG and DIR functions continue to operate normally. ### 4. TSD (THERMAL SHUTDOWN) When the chip temperature rises up to about 175°C, the Q2 turns on so that the output driver will be shutdown. When the chip temperature falls off to about 150°C, then the Q2 turns off so that the driver is to operate normally. Thus, TSD has the temperature hysteresis of about 25°C. #### 5. ROTATIONAL DIRECTION DETECTION | Rotation | 20 DIR | |----------|--------| | Forward | Low | | Reverse | High | - 1) The forward and the reverse rotations of the CD are simply detected by using the D-F/F and the truth table is shown in the above table. - 2) The rotational direction of the CD can be explained by the output waveforms of the Hall sensors. Let the three outputs of Hall sensors be H1, H2 and H3 respectively. When the spindle rotates in reverse direction, the Hall sensor output waveforms are shown in Fig.(a). Thus the phases orderd in $H1\rightarrow H2\rightarrow H3$ with a 120° phase difference. On the other hand, if the spindle rotates in forwand rotation, the phase relationship is H3→H2→H1 as shown in Fig.(b) Therefore, the output of the rotational direction detector is Low, when the spindle rotates forward, while HIGH as in the case of the reverse rotation. #### **6.REVERSE ROTATION PREVENTION** - 1) When the output of the OR Gate, A is LOW, it steers all the output current of the current sense Amp makes the current delivered to the Gain Controller zero. Thus the output current of the Driver becomes zero and the motor is stopped. - 2) As in the state of the forward rotation, the D-F/F output, Q is HIGH and the motor rotates normally. At this state, if the control input is changed such that EC>ECR, then the motor rotates slowly more and more by the reverse commutation in the Driver. At the moment that the motor rotates in reverse direction, the D-F/F output becomes Low and the OR Gate output, thus, becomes LOW. This prevents the motor from rotating in reverse direction. The operation principle is shown in the table and the flow chart. | Detetion | UО | По | D-F/F | Reverse Rota | tion Preventer | | |----------|----|-----|-------|---------------------------------|---------------------------------|--| | Rotation | H2 | H3 | (Q) | E _C >E _{CR} | E _C >E _{CR} | | | Forward | Н | H→L | Н | Forward | - | | | Reverse | L | H→L | L | - | Brake and Stop | | ### 7. FG OUTPUT #### 8. HALL SENSOR CONNECTION 9. CONNECT A BY-PASS CAPACITOR, 0.1uF BETWEEN THE SUPPLY VOLTAGE SOURCE. 10. THE HEAT RADIATION FIN IS CONNECTED TO THE INTERNAL GND OF THE PACKAGE. CONNECT THAT FIN TO THE EXTERNAL GND. ## 11.INPUT-OUTPUT TIMING CHART ### **TEST CIRCUITS** ## **TYPICAL APPLICATION** ## PACKAGE DIMENSION # 28-SSOPH-375