AUTOMOTIVE PRODUCTS

FAN MOTOR CONTROLLER

The KA3902 is a monolithic integrated circuit, designed for the PWM control of a fan motor current in an automotive systems. It allows the fan motor speed to be controlled linearly and efficiently.

FEATURES

- Built-in PWM control circuit
- Built-in 5V regulator
- Low supply current
- Stalled motor current limitation
- Built-in overvoltage protector(OVP)
- Built-in overcurrent protector(OCP)
- Built-in load dump protector
- Built-in thermal shutdown(TSD) circuit
- Built-in undervoltage lockout(UVLO) circuit

ORDERING INFORMATION

Device	Package	Operating Temperature
KA3902	14-DIP-300	-40 ~ +90 ℃

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DISCRIPTION

Pin No.	Symbol	Function	
1	CMD	Current command input	
2	CMDa	OP AMP output	
3	CMDb	OP AMP input (-)	
4	SG	Signal GND	
5	Rt/Ct	Oscillator time constant	
6	VREF	Voltage reference (5V)	
7	СН	Max. speed reference input	
8	NC	No connection	
9	CL	Min. speed reference input	
10	CS	Current sense input	
11	PG	Power GND	
12	OUT	Drive output	
13	V _{cc}	V _{cc}	
14	La	Max. current reference input	

ABSOLUTE MAXIMUM RATING (Ta=25°C)

Characteristics	Symbol	Value	Unit
Supply Voltage	V _{cc}	32	V
CMD Input Voltage	V _{CMD}	6	V
Peak Output Current	I _{OPK}	±0.8	A
Power Dissipation	P _D	1	W

OPERATING VOLTAGE (Ta=25°C)

Characteristics	Symbol	Value			Unit	
Gilaracteristics	Symbol	Min	Тур	Мах	Unit	
Power Supply Voltage	V _{cc}	9.0	12.0	32.0	V	

TEMPERATURE CHARACTERISTICS

Characteristics	Symbol	Temp	Value	Unit	
Vref Temperature Stability	V _{ST}	-40 ~ +90 ℃	200	Ĉ	
Frequency Stability	F _{ST}	-40 ~ +90 ℃	20 ~ 30	Ĉ	
Operating Temperature	T _{OPR}	-	-40 ~ +90	Ĵ	
Storage Temperature	T _{STG}	-	-60 ~ +150	Ĵ	

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, T_a=25 $^\circ C$, V_{CC}=5V, V_M=12V)

Characteristics	Symbol Test Conditions	SPEC			Unit	
Gharacteristics		Test Conditions	Min	Тур	Max	Onic
REFERENCE	REFERENCE					
Reference Voltage	Vref	Iref=1mA	4.75	5.0	5.25	V
Line Regulation	∆Vref1	V _{CC} =9V~32V	-	50	150	mV
Load Regulation	∆Vref2	Iref=1mA~10mA	-	10	50	mV
UNDER VOLTAGE LOCKOUT (UVLO)						
Start Threshold Voltage	Vth(st)	-	7.5	8.0	8.5	V
Threshold Hysteresis	V _{HYS}	-	1.0	1.2	1.4	V
PROTECTION	PROTECTION					
Over Voltage	O _{VP}	-	33	36	-	V
OSCILLATOR (Rt=75kΩ, Ct=1nF)						
Frequency	f _{osc}	-	20	25	30	KHz
Duty Cycle	Duty	-	90	95	-	%
CURRENT SENSING INPUT						
Threshold Voltage	Vth(cs)	V _{CMD} =5V	0.19	0.20	0.21	V
OUTPUT DRIVER	· · ·					
Output Voltage Switching Limit	V _{OLIM}	V _{CC} =18V, Cld=1nF	-	15	-	V
Low Output Voltage	V _{OL1}	lout=20mA	-	-	0.4	V
	V _{OL2}	200mA	-	-	2.2	V
High Output Voltage	V _{OH1}	lout=-20mA	10.0	-	-	V
	V _{OH2}	-200mA	9.0	-	-	V
Rising Time	Tr	Cld=1nF	-	100	200	nS
Falling Time	T _f	Cld=1nF	-	100	200	nS
TOTAL STANDBY CURRENT						
Start - up Current	I _{ST}	V _{CC} =7V	-	1.0	1.5	mA
Operating Supply Current	I _{cc}	V _{CC} =9V	-	6.0	8.0	mA

APPLICATION INFORMATION

1. UNDER VOLTAGE LOCKOUT (UVLO)

2. CURRENT SENSING CIRCUIT

The peak current, $I_{S(MAX)} = V_S/R_S$ For example, if a required maximum current, $I_{S(MAX)} = 20[A]$,

$$Rs = \frac{1V/5}{20A} = 10[m\Omega]$$

3. THERMAL SHUTDOWN (TSD)

When the chip temperature rises up to 150 $^\circ C$, the output driver will be turned off, and then the output will be turned on again at 125 $^\circ C$.

4. OSCILLATOR COMPONENT SELECTION

The oscillator timing components can be calculated as follows :

$$\begin{split} T_{C} &= R_{T} \times C_{T} \times ln[(Vref - V_{L})/(Vref - V_{H})] \\ T_{D} &= C_{T} \times [(V_{H} - V_{L})/I_{D}] \\ f_{OSC} &= 1/(T_{C} + T_{D}) \\ &= 1.875/(R_{T} \times C_{T}) \\ Duty &= T_{C} \times f_{OSC} \times 100 \end{split}$$

For example, if f_{OSC}=25kHz and duty=95%,

$$\begin{array}{l} C_{\mathsf{T}} = (\mathsf{T}_{\mathsf{D}} \! \times \! \mathsf{I}_{\mathsf{D}}) / (\mathsf{V}_{\mathsf{H}} \! - \! \mathsf{V}_{\mathsf{L}}) \\ = 1,000 [\mathsf{pF}] \\ \mathsf{R}_{\mathsf{T}} = 1.875 / (f_{\mathsf{OSC}} \! \times \! \mathsf{C}_{\mathsf{T}}) \\ = 1.875 / (25 \mathsf{kHz} \! \times \! 1,\! 000 \mathsf{pF}) \\ = 75 [\mathsf{k} \Omega] \end{array}$$

5. CURRENT COMMAND INPUT SECTION

The current command I* selects the lower value between V_{CMD} and $V_{\text{La}}.$

SAMSUNG
ELECTRONICS

6. MOTOR STALL CURRENT LIMITATION

At the steady state, the terminal voltage on a motor is consisted of a back EMF and the voltage drop on the armarture resistors. When the motor happens to be stalled, the back EMF becomes zero, and the motor current(I_M) is quickly increased until a maximum values.

Therefore the duty of the PIN #12 output becomes lower because of the increase of the sense voltage(V_{RS}). Also it makes the voltage(V_{La}) be lowered, then it makes the duty becomes lower again. This mechanism makes the motor current hold very low value in the stalled motor state. The voltage on PIN #14(V_{La}) is calculated as follows :

$$V_{La} = V_{BAT} \times D \times \frac{R3}{R2 + R3}$$

Assumed the saturation voltage of Q1 is zero.

We can choose the ratio of the resistors, R2 and R3, as follows :

(1) Applied the rated voltage on motor, and then measured the current IRAT (2) Matched the maximum command current, $V_{CMD,MAX}$ to I_{RAT} .

Whatehead the maximum communication of the first of the

The buffer OP-Amp selects the lower command between VCMD and VLa so as to limit the stalled motor current to very low level in the above figure. Because of much larger VLa than VCMD, the motor operating point stays at A. But the point gradually moves toward B' and then B" through the curve from the instance of stall as the below figure.

KA3902

7. MODE SELECTION

The KA3902 has three operation regions as follows.

- ① STOP : turned-off the power MOSFET
- 2 LINEAR : linearly controlled the power MOSFET
- ③ FULL-ON : fully turned-on the power MOSFET

The Voltages, VSRT(PIN# 9) and VMAX(PIN# 7), in the application circuit are as follows.

 $V_{SRT(PIN\#9)} = Vref \times R9/(R7+R8+R9)$

 $V_{MAX(PIN\#7)} = Vref \times (R8+R9)/(R7+R8+R9)$

8. OVER VOLTAGE PROTECTOR (OVP)

If the voltage, $V_{BAT} \ge 36[V]$, the output(PIN #12) is grounded, and the switching device(power MOSFET) is turned-off, and the motor is stopped. Then if the voltage, $V_{BAT} \le 36[V]$, the switching device is turned-on again, and the motor is operated.

9. TOTEM-POLE OUTPUT

The KA3902 has a single totem-pole output driver which can be drive current to peak ± 0.8 [A].

<u>KA3902</u>

AUTOMOTIVE PRODUCTS

TEST CIRCUIT

TYPICAL APPLICATION

