L2720/2/4

LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

PRELIMINARY DATA

- OUTPUT CURRENT TO 1A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFER-ENTIAL MODE RANGE

SGS-THOMSON MICROELECTRONICS

- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN
- CLAMP DIODE

The L2720, L2722 and L2724 are monolithic integrated circuits in powerdip, minidip and SIP-9 packages, intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

ABSOLUTE MAXIMUM RATINGS

They are particularly indicated for driving, inductive loads, as motor and finds applications in compact-disc VCR automotive, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

V.	Supply voltage	28	V
V _s	Peak supply voltage (50ms)	50	v
V ₁	Input voltage	V.	
Vi	Differential input voltage	± Vs	
I _o	DC output current	1	А
l _p	Peak output current (non repetitive)	1.5	Α
Ptot	Power dissipation at $T_{amb} = 80^{\circ}C$ (L2720), $T_{amb} = 50^{\circ}C$ (L2722)	1	W
	$T_{case} = 75^{\circ}C (L2720)$	5	W
	$T_{case} = 50^{\circ}C (L2724)$	10	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

BLOCK DIAGRAMS

CONNECTION DIAGRAMS (Top view)

L2720

SCHEMATIC DIAGRAM (one section)

THERMAL DATA			SIP-9	Powerdip	Minidip	
R _{th J-case} R _{th J-amb}	Thermal resistance junction-pins Thermal resistance junction-albient	max max	10°C/W 70°C/W			

* Thermal resistance junction-pin 4.

ELECTRICAL CHARACTERISTICS ($V_s = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Paramétér		Test Conditions		Min.	Тур.	Max.	Unit
Vs	Single supply voltage			4		28 ± 14	- v
Vs	Split supply voltage		± 2				
I _s	Quiescent drain current	Vs.	V _s = 24V		10	15	- mA
		$V_0 = \frac{V_s}{2}$	V _{\$} = 8V		9	15	
1 _D	Input bias current				0.2	1	μA
Vos	Input offset voltage					10	mV
l _{os}	Input offset current					100	nA
SR	Slew rate				2		V/µs
В	Gain-bandwidth product				1.2		MHz
Ri	Input resistance			500			ΚΩ
Gv	O.L. voltage gain	f = 100Hz		70	80		
	f = 1KHz			60		- dB	
eN	Input noise voltage				• 10		μV
IN	Input noise current	- B = 22Hz to 22KHz			200		pА
CMR	Common Mode rejection	f = 1KHz		66	84		dB
SVR	Supply voltage rejection	f = 100Hz R _G = 10KΩ V _R = 0.5V	$V_{s} = 24V$ $V_{s} = \pm 12V$ $V_{s} = \pm 6V$	60	70 75 80		dB dB dB
VDROP (HIGH)		- V _s = ±2.5V to ±12V	I _p = 100mA		0.7		- v
			I _p = 500mA		1.0	1.5	
VDROP (LOW)			I _p = 100mA		0.3		V
			l _p = 500mA		0.5	1.0	
Cs	Channel separation	$f = 1 \text{ KHz} \qquad V_s = 24 \text{ V}$ $R_L = 10 \Omega \qquad V_s = 6 \text{ V}$			60		dB
		$G_v = 30dB$	$V_s = 6V$		60		
T _{sd}	Thermal shutdown junction temperature				145		°c

Fig. 5 - Output swing vs load current ($V_s = \pm 12V$)

SGS-THOMSON

APPLICATION SUGGESTION

In order to avoid possible instability occurring into final stage the usual suggestions for the linear power stages are useful, as for instance:

- layout accuracy;
- A 100nF capacitor connected between supply pins and ground;
- boucherot cell (0.1 to $0.2 \,\mu\text{F} + 1\Omega$ series) between outputs and ground or across the load. With single supply operation, a resistor (1K Ω) between the output and supply pin can be necessary for stability.
- Fig. 8 Bidirectional DC motor control with µP compatible inputs

 V_{S1} = logic supply voltage Must be $V_{S2} > V_{S1}$ E1, E2 = logic inputs

Fig. 9 - Servocontrol for compact-disc

Fig. 10 - Capstan motor control in video recorders

L2720/2/4

Fig. 11 - Motor current control circuit

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 12 - Bidirectional speed control of DC motors.

For circuit stability ensure that $R_X > \frac{2R3 \circ R1}{R_M}$ where R_M = internal resistance of motor. The voltage available at the terminals of the motor is $V_M = 2$ ($V_1 - \frac{V_s}{2}$) + $|R_o|$. I_M where $|R_o| = \frac{2R \circ R1}{R_X}$ and I_M is the motor current.

Fig. 13 - VHS-VCR Motor control circuit

