

L2720/2/4

LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

PRELIMINARY DATA

- OUTPUT CURRENT TO 1A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFER-ENTIAL MODE RANGE
- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN
- CLAMP DIODE

The L2720, L2722 and L2724 are monolithic integrated circuits in powerdip, minidip and SIP-9 packages, intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

ABSOLUTE MAXIMUM RATINGS

They are particularly indicated for driving, inductive loads, as motor and finds applications in compact-disc VCR automotive, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

		T	
V,	Supply voltage	28	v
V _s	Peak supply voltage (50ms)	50	v
V ₁	Input voltage	V.	
Vi	Differential input voltage	± V,	
1	DC output current	1	Α
Ip.	Peak output current (non repetitive)	1.5	Α
Ptot	Power dissipation at $T_{amb} = 80^{\circ}C$ (L2720), $T_{amb} = 50^{\circ}C$ (L2722)	1	w
	$T_{case} = 75^{\circ}C (L2720)$	5	w
	$T_{case} = 50^{\circ}C (L2724)$	10	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

BLOCK DIAGRAMS

June 1988

1/7

CONNECTION DIAGRAMS

L2720

SCHEMATIC DIAGRAM (one section)

THERMAL DATA			SIP-9	Powerdip	Minidip	
R _{th} j-case	Thermal resistance junction-pins	max	10°C/W	15°C/W	*70°C/W	
R _{th} j-amb	Thermal resistance junction-albient	max	70°C/W	70°C/W	100°C/W	

* Thermal resistance junction-pin 4.

ELECTRICAL CHARACTERISTICS ($V_s = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
/s Single supply voltage			4			28	
Vs	Split supply voltage			± 2		± 14	- ~
ls	Quiescent drain current	$V_0 = \frac{V_s}{2}$	V _s = 24V		10	15	- mA
			$V_s = 24V$ $V_s = 8V$		9	15	
1 _b	Input bias current				0.2	1	μA
V _{os}	Input offset voltage					10	mV
los	Input offset current					100	nA
SR	Slew rate				2		V/µs
В	Gain-bandwidth product				1.2		MHz
R _i	Input resistance			500			КΩ
Gv	O.L. voltage gain	f = 100Hz 70		80			
	f = 1KHz				60		dB
e _N	Input noise voltage				· 10		μV
IN	Input noise current	B = 22Hz to 22KHz			200		pА
CMR	Common Mode rejection	f = 1KHz		66	84		dB
SVR	Supply voltage rejection	f = 100Hz R _G = 10KΩ V _R = 0.5V	$V_{s} = 24V$ $V_{s} = \pm 12V$ $V_{s} = \pm 6V$	60	70 75 80		dB dB dB
VDROP (HIGH)			I _p = 100mA		0.7		v
			I _p = 500mA		1.0	1.5	
VDROP (LOW)		$V_{s} = \pm 2.5V$ to $\pm 12V$	l _p = 100mA	0	0.3		
			I _p = 500mA		0.5	1.0	v
Cs	Channel separation	f = 1KHz $R_{L} = 10\Omega$ $G_{v} = 30dB$	$V_{s} = 24V$ $V_{s} = 6V$		60 60		dB
T _{sd}	Thermal shutdown junction temperature				145		°c

- boucherot cell (0.1 to 0.2 μ F + 1 Ω series) bet-

necessary for stability.

ween outputs and ground or across the load.

With single supply operation, a resistor $(1K\Omega)$ between the output and supply pin can be

APPLICATION SUGGESTION

In order to avoid possible instability occurring into final stage the usual suggestions for the linear power stages are useful, as for instance:

- layout accuracy;
- A 100nF capacitor connected between supply pins and ground;
- Fig. 8 Bidirectional DC motor control with μ P compatible inputs

Fig. 9 - Servocontrol for compact-disc

Fig. 10 - Capstan motor control in video recorders

Fig. 11 - Motor current control circuit

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 12 - Bidirectional speed control of DC motors.

For circuit stability ensure that $R_X > \frac{2R3 \circ R1}{R_M}$ where R_M = internal resistance of motor. The voltage available at the terminals of the motor is $V_M = 2$ ($V_1 - \frac{V_s}{2}$) + $|R_o|$. I_M where $|R_o| = \frac{2R \circ R1}{R_X}$ and I_M is the motor current.

Fig. 13 - VHS-VCR Motor control circuit

