

L4902A

DUAL 5V REGULATOR WITH RESET AND DISABLE

PRELIMINARY DATA

- DOUBLE BATTERY OPERATING
- OUTPUT CURRENTS: I₀₁ = 300mA
 I₀₂ = 300mA
- FIXED PRECISION OUTPUT VOLTAGE 5V ± 2%
- RESET FUNCTION CONTROLLED BY IN-PUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PRO-GRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- OUTPUT 2 DISABLE LOGICAL INPUT
- LOW LEAKAGE CURRENT, LESS THAN 1 μ A AT OUTPUT 1
- RESET OUTPUT NORMALLY HIGH

ABSOLUTE MAXIMUM RATINGS

- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- OUTPUT TRANSISTORS SOA PROTEC-TION
- SHORT CIRCUIT AND THERMAL OVER-LOAD PROTECTION

The L4902A is a monolithic low drop dual 5V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions and remote switch on/off control can be realized.

VIN	DC input voltage	28	V
	Transient input overvoltage ($t = 40 \text{ ms}$)	60	V
I.	Output current	internally limited	
T_{stg}, T_j	Storage and junction temperature	-40 to 150	°C

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

N°	NAME	FUNCTION		
1	INPUT 1	Regulators common input.		
2	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a 5μ A constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.		
3	V02 DISABLE INPUT	A high level (> V_{DT}) disable output Reg. 2.		
4	GND	Common ground.		
5	RESET OUTPUT	When pin 2 reaches 5V the reset output is switched high. Therefore $t_{RD} = C_t \left(\frac{5V}{10\mu A}\right)$; t_{RD} (ms) = C_t (nF).		
6	OUTPUT 2	$5V$ - 300mA regulator output. Enabled if V_O 1 $>$ $V_{RT}.$ DISABLE INPUT $<$ V_{DT} and V_{IN} $>$ $V_{IT}.$ If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.		
7	OUTPUT 1	5V - 300mA. Low leakage (in switch-OFF condition) output.		

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4	°C/W

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS ($V_{IN} = 14.4V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	DC operating input voltage				24	V
V ₀₁	Output voltage 1	R load 1KΩ	4.95	5.05	5.15	V
V _{02 H}	Output voltage 2 HIGH	R load 1KΩ	V01+0.1	5	V ₀₁	V
V _{02L}	Output voltage 2 LOW	1 ₀₂ = -5mA		0.1		V
I ₀₁	Output current 1 max.	∆V ₀₁ = -100mV	300			mA
LO1	Leakage output 1 current	$V_{IN} = 0$ $V_{01} \le 3V$			1	μA
I ₀₂	Output current 2 max.	∆V ₀₂ = -100mV	300			mA
VIOI	Output 1 dropout voltage (*)	l ₀₁ = 10mA l ₀₁ = 100mA l ₀₁ = 300mA		0.7 0.8 1.1	0.8 1 1.4	v v v
VIT	Input threshold voltage		V ₀₁ +1.2	6.4	V ₀₁ +1.7	V
VITH	Input threshold voltage hysteresis			250		mν
∆V ₀₁	Line regulation 1	$7V < V_{IN} < 24V$ I ₀₁ = 5mA		5	50	mV
∆V ₀₂	Line regulation 2	I ₀₂ = 5mA		5	50	mV
∆V ₀₁	Load regulation 1	5mA < 1 ₀₁ < 300mA		40	80	mV
∆V ₀₂	Load regulation 2	5mA < 1 ₀₂ < 300mA		50	80	mV
IQ.	Quiescent current	$\begin{array}{l} 0 < V_{IN} < 13V \\ 7V < V_{IN} < 13V \\ 7V < V_{IN} < 13V \\ V_{02} \ LOW \\ 7V < V_{IN} < 13V \\ V_{02} \ HIGH \\ I_{01} = I_{02} \leq 5mA \end{array}$		4.5 2.7 1.6	6.5 4.5 3.5	mA mA mA
VRT	Reset threshold voltage		V ₀₂ -0.15	4.9	V ₀₂ -0.05	V
Yama	Reset threshold hysteresis		30	50	80	mV

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VRH	Reset output voltage HIGH	Ι _R = 500μA	V ₀₂ -1	4.12	V ₀₂	V
VRL	Reset output voltage LOW	I _R = -1mA		0.25	0.4	V
tRD	Reset pulse delay	C _t = 10nF	3	5	11	ms
t _d	Timing capacitor discharge time	C _t = 10nF			20	μs
VDT	V ₀₂ disable threshold voltage			1.25	2.4	V
۱ _D	V ₀₂ disable input current	$V_{\rm D} \le 0.4 V$ $V_{\rm D} \ge 2.4 V$		-150 -30		μА μА
ΔV ₀₁ ΔT	Thermal drift	-20°C < T _{amb} < 125°C		0.3 -0.8		mV/°C
ΔV ₀₂ ΔT	Thermal drift	-20°C < T _{amb} < 125°C		0.3 -0.8		mV/°C
SVR1	Supply voltage rejection	f = 100Hz V _R = 0.5V I _o = 100mA	50	84		dB
SVR2	Supply voltage rejection		50	80		dB
TJSD	Thermal shut down			150		°c

ELECTRICAL CHARACTERISTICS (continued)

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25mV under constant output current condition.

APPLICATION INFORMATION

In power supplies for μ P systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4902A makes it very easy to supply such equipments; it provides two voltage regulators (both 5V high precision) with common inputs plus a reset output for the data save function and a Req. 2 disable input.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until $V_{\rm 01}$ rises to the nominal value.

When the input reaches V_{1T} and the output 1 is higher than V_{RT} the output 2 (V_{02}) switches on and the reset output (V_R) also goes high after a programmable time T_{RD} (timing capacitor).

 V_{02} and V_R are switched together at low level when one of the following conditions occurs: - a high level (> V_{DT}) is applied on pin 3;

- an input overvoltage;
- an overload on the output 1 ($V_{01} < V_{RT}$);
- a switch off (V_{IN} < V_{IT} V_{ITH});

and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V₀₁ output features:

- 5V internal reference without voltage divider between the output and the error comparator
- very low drop series regulator element utilizing current mirrors

permit high output impedance and then very low leakage current even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.

CIRCUIT OPERATION (continued)

The V_{02} output can supply other non essential 5V circuits wich may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access

only in correct power conditions, or as a "BACK-UP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

The disable function can be used for remote on/off control of circuits connected to the V_{02} output.

APPLICATION SUGGESTION

Fig. 2 illustrate how the L4902A's disable input may be used in a CMOS μ Computer application.

The V₀₁ regulator (low consumption) supply permanently a CMOS time of day clock and a CMOS μ computer chip with volatile memory. V₀₂ output, supplying non-essential circuits, is turned OFF under control of a μ P unit.

Configurations of this type are used in products where the OFF switch is part of a keyboard scanned by a micro which operates continuously even in the OFF state.

Another application for the L4902A is supplying a shadow-ram microcomputer chip (SGS M38SH72 for exemple) where a fast NV memory is backed up on chip by a EEPROM when a low level on

the reset output occurs.

By adding two CMOS-SCHMIDT-TRIGGER and few external components, also a watch dog function may be realized (see fig. 5). During normal operation the microsystem supplies a periodical pulse waveform; if an anomalous condition occours (in the program or in the system), the pulses will be absent and the disable input will be activated after a settling time determined by R1 C1. In this condition all the circuitry connected to V_{02} will be disabled, the system will be restarted with a new reset front.

The disable of V_{02} prevent spurious operation during microprocessor malfunctioning.

APPLICATION SUGGESTION (continued)

Fig. 2

Fig. 3 - P.C. board and component layout of the circuit of Fig. 2 (1 : 1 scale)

APPLICATION SUGGESTION (continued)

Fig. 4

Fig. 5

APPLICATION SUGGESTION (continued)

Fig. 6 - Quiescent current vs. output current

Fig. 7 - Quiescent current vs. input voltage

Fig. 8 – Supply voltage rejection regulators 1 and 2 vs. input ripple frequence

