L4903

DUAL 5V REGULATOR WITH RESET AND DISABLE FUNCTIONS

PRELIMINARY DATA

- OUTPUT CURRENTS: $I_{01} = 50 \text{mA}$ $I_{02} = 100 \text{mA}$
- FIXED PRECISION OUTPUT VOLTAGE 5V ± 2%

SGS-THOMSON MICROELECTRONICS

- RESET FUNCTION CONTROLLED BY IN-PUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PRO-GRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- OUTPUT 2 DISABLE LOGICAL INPUT
- \bullet LOW LEAKAGE CURRENT, LESS THAN 1µA AT OUTPUT 1
- INPUT OVERVOLTAGE PROTECTION UP TO 60V

ABSOLUTE MAXIMUM RATINGS

- RESET OUTPUT NORMALLY LOW
- OUTPUT TRANSISTORS SOA PROTEC-TION
- SHORT CIRCUIT AND THERMAL OVER-LOAD PROTECTION

The L4903 is a monolithic low drop dual 5V regulator designed mainly for supplying microprocessor systems.

Reset, data save functions and remote switch on/off control can be realized.

VIN	DC input voltage	24	V
V	Transient input overvoltage $(t = 40 \text{ ms})$	60	V
Ptot	Power dissipation at $T_{amb} = 50^{\circ}C$	1	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

N° NAME FUNCTI		FUNCTION
1	INPUT 1	Low quiescent current 50mA regulator input.
2	INPUT 2	100mA regulator input.
3	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $10\mu A$ constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.
4	GND	Common ground.
5	V ₀₂ DISABLE INPUT	A high level (> V_{DT}) disables output Reg. 2.
6	RESET OUTPUT	When pin 3 reaches 5V the reset output is switched low. Therefore $t_{RD} = C_t \left(\frac{5V}{10\mu A}\right)$; t_{RD} (ms) = C_t (nF).
7	OUTPUT 2	$5V$ - 100mA regulator output. Enabled if V_{O} 1 $>$ V_{RT} . DISABLE INPUT $<$ V_{DT} and V_{IN2} $>$ V_{IT} . If Reg. 2 is switched OFF the C_{02} capacitor is discharged.
8	OUTPUT 1	5V - 50mA regulator output with low leakage in switch- OFF condition.

THERMAL DATA

R _{th j-pin}	Thermal resistance junction-pin 4	max	70	°C/W
R _{tb j-amb}	Thermal resistance junction-ambient	max	100	°C/W

L4903

TEST CIRCUIT

P.C. board and components layout of the test circuit (1 : 1 scale)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	DC operating input voltage				20	V
Vol	Output voltage 1	R load 1KΩ	4.95	5.05	5.15	V
V _{02H}	Output voltage 2 HIGH	R load 1KΩ	V ₀₁ -0.1	5	V ₀₁	V
VO2L	Output voltage 2 LOW	1 ₀₂ = -5mA		0.1		V
I ₀₁	Output current 1 max. (*)	∆V ₀₁ = -100mV	50			mA
IL01	Leakage output 1 current	$V_{1N} = 0$ $V_{01} \le 3V$			1	μA
I ₀₂	Output current 2 max. (*)	∆V ₀₂ = -100mV	100			mA
V _{I01}	Output 1 dropout voltage (*)	l ₀₁ = 10mA l ₀₁ = 50mA		0.7 0.75	0.8 0.9	v v
VIT	Input threshold voltage		V ₀₁ +1.2	6.4	V ₀₁ +1.7	V
VITH	Input threshold voltage hysteresis			250		mV
∆V ₀₁	Line regulation 1	$7V < V_{1N} < 18V$ $I_{01} = 5mA$		5	50	mV
∆V ₀₂	Line regulation 2	1 ₀₂ = 5mA		5	50	mV
∆V ₀₁	Load regulation 1	V _{IN1} = 8V 5mA < I ₀₁ < 50mA		5	20	mV
∆V ₀₂	Load regulation 2	5mA < I ₀₂ < 100mA		10	50	mV
lQ	Quiescent current	$\begin{array}{l} 0 < V_{1N} < 13V \\ 7V < V_{1N} < 13V \\ V_{02} \ LOW \\ 7V < V_{1N} < 13V \\ V_{02} \ HIGH \\ I_{01} = I_{02} \leq 5mA \end{array}$		4.5 2.7 1.6	6.5 4.5 3.5	mA mA mA
Q1	Quiescent current 1			0.6	0.9	mA

ELECTRICAL CHARACTERISTICS ($V_{IN} = 14,4V, T_{amb} = 25^{\circ}C$ unless otherwise specified)

4/7

	Parameter	Test Conditions	Min.	Тур.	Мах.	Unit
VRT	Reset threshold voltage		V02-0.4	4.7	V ₀₂ -0.2	V
VRTH	Reset threshold hysteresis		30	50	80	mV
VRH	Reset output voltage HIGH	I _R = 500μA	V ₀₂ -1	4.12	V ₀₂	V
VRL	Reset output voltage LOW	I _R = -5mA		0.25	0.4	V
t _{RD}	Reset pulse delay	C _t = 10nF	3	5	11	ms
td	Timing capacitor discharge time	C _t = 10nF			20	μs
VDT	V ₀₂ disable threshold voltage			1.25	2.4	V
D	V ₀₂ disable input current	$V_{D} \leq 0.4V$ $V_{D} \geq 2.4V$		-150 30		μА μА
AV01	Thermal drift	-20°C < T _{amb} < 125°C		0.3 - 0.8		mV/°C
AV ₀₂	Thermal drift	-20°C < T _{amb} < 125°C		0.3 -0.8		mV/°C
SVR1	Supply voltage rejection	f = 100Hz V _R = 0.5V I _o = 50mA	50	84		dB
SVR2	Supply voltage rejection	I _o = 100mA	50	80		dB
TJSD	Thermal shut down			150		°C

ELECTRICAL CHARACTERISTICS (continued)

The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25mV under constant output current conditions.

APPLICATION INFORMATION

In power supplies for μ P systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply s removed. The L4903 makes it very easy to supply such equipments; it provides two voltage regulators (both 5V high precision) with separate inputs plus a reset output for the data save functon and Reg. 2 disable input.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input 2 reaches V_{IT} and the output 1 is higher than V_{RT} the output 2 (V_{02} and V_R) switches on and the reset output (V_R) goes low after a programmable time T_{RD} (timing capacitor).

 V_{02} is switched at low level and V_R at high level when one of the following conditions occurs:

- a high level (> V_{DT}) is applied on pin 5; - an input overvoltage;
- an overload on the output 1 ($V_{01} < V_{RT}$);
- a switch off $(V_{IN} < V_{IT} V_{ITH})$;

and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V₀₁ output features:

- 5V internal reference without voltage divider between the output and the error comparator
- very low drop series regulator element utilizing current mirrors

permit high output impedance and then very low leakage current even in power down conditions.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.

CIRCUIT OPERATION (continued)

The V_{02} output can supply other non essential 5V circuits wich may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access

only in correct power conditions, or as a "BACK-UP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

The disable function can be used for remote on/off control of circuits connected to the $\rm V_{02}$ output.

APPLICATION SUGGESTION

Fig. 2 illustrates how the L4903's disable input may be used in a CMOS μ Computer application.

The V_{01} regulator (low consumption) supply permanently a CMOS time of day clock and a CMOS μ computer chip with volatile memory. V_{02} output, supplying non-essential circuits, is turned OFF under control of a μ P unit.

Configurations of this type are used in products where the OFF switch is part of a keyboard scanned by a micro which operates continuously even in the OFF state.

Fig. 2

6/7

APPLICATION SUGGESTIONS (continued)

Fig. 5 - Total quiescent current vs. input voltage

Fig. 6 - Supply voltage rejection regulators 1 and 2 vs. input ripple frequence

