SGS-THOMSON MICROELECTRONICS

L7800AB/AC SERIES

PRECISION 1A REGULATORS

- OUTPUT CURRENT IN EXCESS OF 1A
- OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION
- 2% OUTPUT VOLTAGE TOLERANCE
- GUARANTEED IN EXTENDED TEMPERA-TURE RANGES

DESCRIPTION

The L7800A series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V	DC Input Voltage (for $V_o = 5$ to 18V) (for $V_o = 24V$)	35 40	V V
I.	Output Current	Internally limited	
Pro.	Power Dissipation	Internally limited	
Τ,	Operating Junction Temperature for L7800AC for L7800AB	0 to 125 - 40 to 125	⊃°C ⊃°
T _{stg}	Storage Temperature	- 65 to + 150	°C

THERMAL DATA

Symbol	Parameter		TO-220	TO-3	Unit
Rth case	Thermal Resistance Junction-case	Max	3	4	°C/W
Rin amb	Thermal Resistance Junction-ambient	Max	50	35	°C/W

CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)

$T_1 = -40$ to 125 C $T_1 = 0$ to 125 C		o 125°C	Output Voltage
TO-220	TO-220	TO-3	
! 7805ABV	L7805ACV	L7805ACT	5 V
L7806ABV	L7806ACV	L7806ACT	6 V
L7808ABV	L7808ACV	L7808ACT	8 V
L7812ABV	L7812ACV	L7812ACT	12V
L7815ABV	L7815ACV	L7815ACT	15V
L7818ABV	L7818ACV	L7818ACT	18V
L7824ABV	L7824ACV	L7824ACT	24V

TYPICAL APPLICATION

SCHEMATIC DIAGRAM

TEST CIRCUITS

Figure 1 : DC Parameters.

Figure 3 : Ripple Rejection.

Figure 2 : Load Regulation.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T ₁ = 25°C	4.9	5	5.1	V
Vo	Output Voltage	$I_o = 5mA$ to 1A, $P_o \le 15W$ $V_i = 7.5$ to 20V	4.8	5	5.2	V
ΔV°	Line Regulation	$V_i = 7.5 \text{ to } 25V, I_o = 500\text{mA}$ $V_i = 8 \text{ to } 12V$		7 10	50 50	mV mV
		$V_i = 8 \text{ to } 12V, T_1 = 25^{\circ}C$ $V_i = 7.3 \text{ to } 20V, T_j = 25^{\circ}C$		2 7	25 50	mV mV
ΔV°,	Load Regulation	$I_o = 5mA \text{ to } 1A$ $I_o = 5mA \text{ to } 1.5A, T_j = 25^{\circ}C$ $I_o = 250 \text{ to } 750mA$		25 25 8	100 100 50	mV mV mV
1 _d	Quiescent Current	T _j = 25°C		4.3	6 6	mA mA
Δl _d	Quiescent Current Change				0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_i = 8 \text{ to } 18V, f = 120Hz$ $I_o = 500mA$		68		dB
Vd	Dropout Voltage	$I_o = 1 \text{ A } T_j = 25^{\circ}\text{C}$		2	[V
e _N	Output Noise Voltage	$f = 10Hz$ to 100KHz, $T_j = 25^{\circ}C$		10		μV/V _c
Ro	Output Resistance	f = 1KHz		17		mΩ
lsc	Short Circuit Current	$T_{amb} = 25^{\circ}C$ $V_i = 35V$		0.2		A
Iscp	Short Circuit Peak Current	T _j = 25°C		2.2		Α
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift			- 1.1		mV/°C

ELECTRICAL CHARACTERISTICS L7805A ($V_i = 10V$, $I_o = 1A$, $T_j = 0$ to 125°C (L7805AC), $T_j = -40$ to 125°C (L7805AB) unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T, = 25°C	5.88	6	6.12	V
Vo	Output Voltage	$I_o = 5mA$ to 1A, $P_o \le 15W$ V = 8.6 to 21V	5.76	6	6.24	V
ΔV₀*	Line Regulation	$V_1 = 8.6 \text{ to } 25\text{V}, I_0 = 500\text{mA}$ V = 9 to 13V		9 11	60 60	mV mV
	3	V ₁ = 9 to 13V. T ₁ = 25 C V ₂ = 8.3 to 21V, T ₁ = 25 C		3 9	30 60	mV mV
ΔV _o *	Load Regulation	$l_0 = 5mA \text{ to } 1A$ $l_0 = 5mA \text{ to } 1.5A$, T, = 25 C $l_0 = 250 \text{ to } 750mA$		43 43 16	100 100 50	mV mV mV
١d	Quiescent Current	T, = 25°C		4.3	6 6	mA mA
Δld	Quiescent Current Change	V ₁ = 9 to 25V. $I_0 = 500 \text{mA}$ V ₂ = 8.6 to 21V, $T_1 = 25 \text{ C}$ $I_0 = 5 \text{mA}$ to 1A			0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	V. = 9 to 19V, f = 120Hz l_{o} = 500mA		65		dB
Vd	Dropout Voltage	$l_0 = 1 \text{ A } T_1 = 25 \text{ C}$		2		V
eN	Output Noise Voltage	T = 25 C. f = 10Hz to 100KHz		10		μV/V _o
Ro	Output Resistance	f = 1KHz		17		mΩ
Isc	Short Circuit Current	$T_{amb} = 25 C V = 35V$		0.2		A
Iscp	Short Circuit Peak Current	T = 25 C		2.2		A
Δνο	Output Voltage Drift			- 0.8		mV/ C

ELECTRICAL CHARACTERISTICS L7806A (V₁ = 11V, I₀ = 1A, T₁ = 0 to 125°C (L7806AC), T₁ = -40 to 125°C (L7806AB) ; unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in V_e due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T ₁ = 25°C	7.84	8	8.16	V
Vo	Output Voltage	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ $V_i = 10.6 \text{ to } 23V$	7.7	8	8.3	V
ΔV _o *	Line Regulation	$V_i = 10.6 \text{ to } 25V, I_o = 500\text{mA}$ $V_i = 11 \text{ to } 17V$		12 15	80 80	mV mV
		$V_i = 11 \text{ to } 17V, T_j = 25^{\circ}C$ $V_i = 10.4 \text{ to } 23V, T_j = 25^{\circ}C$		5 12	40 80	mV mV
ΔV _o +	Load Regulation	$I_o = 5mA$ to 1A $I_o = 5mA$ to 1.5A, $T_j = 25^{\circ}C$ $I_o = 250$ to 750mA		45 45 16	100 100 50	mV mV mV
ld	Quiescent Current	T _j = 25°C		4.3	6 6	mA mA
Δl _d	Quiescent Current Change				0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_{\rm i}$ = 11.5 to 21.5V, f = 120Hz $I_{\rm o}$ = 500mA		62		dB
Vd	Dropout Voltage	$I_o = 1 \text{ A } T_j = 25^{\circ}\text{C}$		2		V
eN	Output Noise Voltage	$T_j = 25^{\circ}C$, f = 10Hz to 100KHz		10		μV/Vo
Ro	Output Resistance	f = 1KHz		18		mΩ
Isc	Short Circuit Current	$T_{amb} = 25^{\circ}C$ $V_i = 35V$		0.2		A
Iscp	Short Circuit Peak Current	T ₁ = 25°C		2.2		A
Δνο	Output Voltage Drift			- 0.8		mV/°C

ELECTRICAL CHARACTERISTICS L7808A ($V_i = 14V$, $I_o = 1A$, $T_j = 0$ to 125°C (L7808AC), $T_j = -40$ to 125°C (L7808AB), unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25°C	11.75	12	12.25	V
Vo	Output Voltage	$I_o = 5mA$ to 1A, $P_o \le 15W$ $V_i = 14.8$ to 27V	11.5	12	12.5	V
ΔV _p *	Line Regulation	V_i = 14.8 to 30V, I_o = 500mA V_i = 16 to 22V		13 16	120 120	mV mV
		V _i = 16 to 22V, T _j = 25°C V _i = 14.5 to 27V, T _j = 25°C		6 13	60 120	mV mV
ΔV₀*	Load Regulation	$I_o = 5mA$ to 1A $I_o = 5mA$ to 1.5A, $T_j = 25^{\circ}C$ $I_o = 250$ to 750mA		46 46 17	100 100 50	mV mV mV
۱ _d	Quiescent Current	T _j = 25°C		4.4	6 6	mA mA
Δl _d	Quiescent Current Change	V _i = 15 to 30V, I _o = 500mA V _i = 14.8 to 27V, T _j = 25°C I _o = 5mA to 1A			0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_i = 15 \text{ to } 25V, f = 120Hz$ $I_o = 500mA$		60		dB
Vd	Dropout Voltage	$l_o = 1 \text{ A} \text{ T}_j = 25^{\circ}\text{C}$		2		V
eN	Output Noise Voltage	$T_{j} = 25^{\circ}C$, f = 10Hz to 100KHz		10		μV/V _o
Ro	Output Resistance	f = 1KHz		18		mΩ
İsc	Short Circuit Current	$T_{amb} = 25^{\circ}C$ $V_i = 35V$		0.2		А
Iscp	Short Circuit Peak Current	T _j = 25°C		2.2		A
Δνο	Output Voltage Drift			- 1		mV/°C

ELECTRICAL CHARACTERISTICS L7812A (V_i = 19V, I_o = 1A, T_j = 0 to 125°C (L7812AC), T_j = -40 to 125°C (L7812AB), unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Va	Output Voltage	T = 25 C	14.7	15	15.3	V
Vo	Output Voltage	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ V, = 17.9 to 30V	14.4	15	15.6	V
ΔV_0^+	Line Regulation	$V_1 = 17.9 \text{ to } 30\text{V}, I_0 = 500\text{mA}$ $V_1 = 20 \text{ to } 26\text{V}$		13 16	150 150	mV mV
		$V_i = 20 \text{ to } 26V, T_1 = 25 \text{ C}$ $V_i = 17.5 \text{ to } 30V, T_2 = 25 \text{ C}$		6 13	75 150	mV mV
ΔV _o *	Load Regulation	$I_o = 5mA$ to 1A $I_o = 5mA$ to 1.5A, $T_i = 25$ C $I_o = 250$ to 750mA		52 52 20	100 100 50	mV mV mV
ld	Quiescent Current	T ₁ = 25 °C		4.4	6 6	mA mA
Δld	Quiescent Current Change	$ \begin{array}{l} V_{1} = 17.5 \ \text{to} \ 30 \text{V}. \ I_{o} = 500 \text{mA} \\ V_{i} = 17.5 \ \text{to} \ 30 \text{V}. \ T = 25^{\circ}\text{C} \\ I_{o} = 5 \text{mA} \ \text{to} \ 1\text{A} \end{array} $			0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_i = 18.5$ to 28.5V, f = 120Hz $I_0 = 500mA$		58		dB
Va	Dropout Voltage	$I_0 = 1 A T_1 = 25 C$		2		V
e _N	Output Noise Voltage	$T = 25^{\circ}C$. f = 10Hz to 100KHz		10		μV/V _o
R,	Output Resistance	f = 1KHz		19		mΩ
lsr	Short Circuit Current	$T_{amb} = 25 C V_{1} = 35V$		C.2		A
Isee	Short Circuit Peak Current	T = 25 C		2.2		A
1V.0 1T	Output Voltage Drift			- 1		mV/°C

ELECTRICAL CHARACTERISTICS L7815A ($V_1 = 23V$, $I_0 = 1A$, $T_1 = 0$ to $125^{\circ}C$ (L7815AC), $T_1 = -40$ to 125 C (L7815AB). unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T ₁ = 25°C	17.64	18	18.36	V
Vo	Output Voltage	$I_o = 5mA$ to 1A, $P_o \le 15W$ $V_i = 21$ to 33V	17.3	18	18.7	V
ΔV°,	Line Regulation	$V_i = 21 \text{ to } 33V, I_o = 500\text{mA}$ $V_i = 24 \text{ to } 30V$		25 28	180 180	mV mV
		$V_i = 24 \text{ to } 30V, T_1 = 25^{\circ}C$ $V_1 = 20.6 \text{ to } 33V, T_1 = 25^{\circ}C$		10 25	90 180	mV mV
ΔV _o *	Load Regulation	$I_o = 5mA \text{ to } 1A$ $I_o = 5mA \text{ to } 1.5A, T_j = 25^{\circ}C$ $I_o = 250 \text{ to } 750mA$		55 55 22	100 100 50	mV mV mV
١ _d	Quiescent Current	T _j = 25°C		4.5	6 6	mA mA
Δld	Quiescent Current Change	$ \begin{array}{l} V_i = 21 \ to \ 33V, \ I_o = 500 mA \\ V_i = 21 \ to \ 33V, \ T_j = 25^\circ C \\ I_o = 5mA \ to \ 1A \end{array} $			0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_i = 22 \text{ to } 32V, f = 120Hz$ $I_o = 500mA$		57		dB
Vd	Dropout Voltage	$I_o = 1 \text{ A} T_j = 25^{\circ}\text{C}$		2		V
eN	Output Noise Voltage	$T_{j} = 25^{\circ}C$, f = 10Hz to 100KHz		10		μV/Vo
R.	Output Resistance	f = 1KHz		19		mΩ
lsc	Short Circuit Current	$T_{amb} = 25^{\circ}C$ $V_i = 35V$		0.2		A
Iscp	Short Circuit Peak Current	T _i = 25°C		2.2		Α
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift			- 1		mV/°C

ELECTRICAL CHARACTERISTICS L7818A ($V_i = 27V$, $I_o = 1A$, $T_j = 0$ to $125^{\circ}C$ (L7818AC), $T_j = -40$ to $125^{\circ}C$ (L7818AB), unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS L7824A ($V_i = 33V$, $I_o = 1A$, $T_i = 0$ to $125^{\circ}C$ (L	.7824AC),
$T_1 = -40$ to 125°C (L7824AB), unless otherwise specified)	

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Vo	Output Voltage	T _j = 25°C	23.5	24	24.5	V
Vo	Output Voltage	$I_o = 5mA$ to 1A, $P_o \le 15W$ $V_i = 27.3$ to 38V	23	24	25	V
ΔV₀*	Line Regulation	$V_i = 27 \text{ to } 38V, I_o = 500\text{mA}$ $V_i = 30 \text{ to } 36V$		31 35	240 240	mV mV
		$V_i = 30 \text{ to } 36V, T_j = 25^{\circ}C$ $V_i = 26.7 \text{ to } 38V, T_j = 25^{\circ}C$		14 31	120 240	mV mV
ΔV _o *	Load Regulation	$I_{o} = 5mA \text{ to } 1A$ $I_{o} = 5mA \text{ to } 1.5A, T_{j} = 25^{\circ}C$ $I_{o} = 250 \text{ to } 750mA$		60 60 25	100 100 50	mV mV mV
١ _d	Quiescent Current	T _j = 25°C		4.6	6 6	mA mA
Δld	Quiescent Current Change	$ \begin{array}{l} V_i = 27.3 \text{ to } 38V, \ l_o = 500\text{mA} \\ V_i = 27.3 \text{ to } 38V, \ T_j = 25^\circ\text{C} \\ l_o = 5\text{mA} \text{ to } 1\text{A} \end{array} $			0.8 0.8 0.5	mA mA mA
SVR	Supply Voltage Rejection	$V_i = 28 \text{ to } 38V, f = 120Hz$ $I_o = 500mA$		54		dB
Vd	Dropout Voltage	$I_{o} = 1 A T_{j} = 25^{\circ}C$		2		V
e _N	Output Noise Voltage	$T_j = 25^{\circ}C$, f = 10Hz to 100KHz		10		μV/V _o
Ro	Output Resistance	f = 1KHz		20		mΩ
Isc	Short Circuit Current	$T_{amb} = 25^{\circ}C$ $V_i = 35V$		0.2		A
Iscp	Short Circuit Peak Current	T _j = 25°C	-	2.2		A
	Output Voltage Drift			- 1.5		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

APPLICATIONS INFORMATION

DESIGN CONSIDERATIONS

The L7800A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a

Figure 4 : Current Regulator.

Figure 6 : Current Boost Regulator.

capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0V greater than the regulator voltage.

Figure 7 : Short-circuit Protection.

The circuit of figure 6 can be modified to provide supply protection against short circuit by adding a short-circuit sense resistor, R_{sc} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

