No. 4957A LA7890 RGB Cutoff Adjustment IC

Overview

The LA7890 is a DC-controlled, CRT display RGB cutoff adjustment IC. It can be used for a wide range of applications, regardless of whether they employ a Trinitron tube or a dot-matrix tube display.

Function

· Operational amplifier

Features

- · DC control
- · Temperature drift stability
- 100 V maximum supply voltage

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter Symbol Conditions Ratings Unit ۷ Maximum supply voltage V_{CC} max 100 Allowable power dissipation Pd max Ta ≦ 75°C 400 mW Operating temperature Topr -10 to +75 °C Storage temperature Tstg -55 to +150 °C

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		80	V
Operating supply voltage	V _{CC} op		60 to 90	V

Package Dimensions

unit : mm

3043A-SIP10

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Operating Characteristics at Ta = 25° C, V_{CC} = 80 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	lcc	When 6 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7	1.9	2.2	- 2.7	mA
Minimum reference voltage	V _{REF} min	Reference value	0			V
Maximum reference voltage	V _{REF} max	Reference value			75	V
Minimum output voltage	V _{OUT} min (R)	When 12 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7			0.3	V
	V _{OUT} min (G)				0.3	V
	V _{OUT} min (B)				0.3	V
Maximum output voltage	V _{OUT} max (R)	When 0 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7	77			V
	V _{OUT} max (G)		77			v
	V _{OUT} max (B)		77		ł	V
High-level output voltage	VOUT high (R)	When 3 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7	67	69	71	V
	V _{OUT} high (G)		67	69	71	V
	V _{OUT} high (B)		67	69	71	V
Mid-level output voltage	V _{OUT} mid (R)	When 6 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7	37	39	41	V
	V _{OUT} mid (G)		37	39	41	V
	V _{OUT} mid (B)		37	39	41	V
Low-level output voltage	V _{OUT} low (R)	When 9 V DC is applied to TP1, TP3 and TP5, and 9 V is applied to TP7	7	9	11	V.
	V _{OUT} low (G)		7	9	11	V
	VOUT low (B)		7	9	11	V [*]

Internal Equivalent Circuit Block Diagram

Test Circuit

Sample Application Circuit

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury; death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall:

Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1996. Specifications and information herein are subject to change without notice.