

Overview

The LB8555 is a delay time generator IC capable of generating exact timing pulses. Both trigger pin and reset pin are provided for various uses such as monostable multivibrator, astable multivibrator. The output circuit is capable of applying 200mA sink/source current. Output is interfaceable to TTL. This IC is usable as a replacement for Signetics-made NE555.

Features

- · Timing time settable from several µsec. to several hours
- \cdot Monostable multivibrator consisting of R = 1, C = 1; astable multivibrator consisting of R = 2, C = 1
- · Adjustable duty cycle of pulse
- · 200mA sink/source current for driving external load

A

Applications				
 Delay time generator (monos 	table multi	vibrator) · Sequence timer		
 Pulse generator (astable multiple) 	tivibrator)	· DC-DC converter		
\cdot Pulse width modulator				
Absolute Maximum Ratings at	$Ta = 25^{\circ}C$,	unit
Maximum Supply Voltage	V _{CC} max		18	v
Output Current	IOUT		± 200	mA
Input Voltage		Trigger,control voltage, reset,threshold	v_{cc}	V
Allowable Power Dissipation	Pd max		625	mW
Operating Temperature	Topr		-20 to $+75$	°C
Storage Temperature	Tstg		-40 to $+125$	°Č
Allowable Operating Range at	$Ta = 25^{\circ}C$			unit
Supply Voltage	V _{CC}		4.5 to 16	v
Input Voltage	Vi	Trigger,control voltage, reset,threshold	V _{CC}	V
Output Current	Io .	-	± 200	mA

Package Dimensions 3001B (unit: mm)

Package Dimensions 3016B (unit: mm)

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

1090TA/6307TA/8075KI/O122KI,TS No.1077-1/3

LB8555D,8555S

Electrical Characteristics at	Ta=25°C		min	typ	max	unit
Supply Current	I _{CC1}	$V_{CC} = 5V, R_L = \infty$		3	6	mA
	I _{CC2}	$V_{CC} = 15V, R_L = \infty$		10	15	mA
Control Voltage	V_{con1}	$V_{CC} = 5V$	2.6	3.33	4.0	V
	V _{con2}	$V_{CC} = 15V$	9	10	11	v
Threshold Voltage	$\mathbf{V}_{\mathbf{TH}}$			$2/3V_{\rm CC}$		v
Threshold Current	I_{TH}			0.1	0.25	μA
Trigger Voltage	$\mathbf{V}_{\mathbf{T}}$			1/3V _{CC}		v
Trigger Current	IT			0.5	1.0	μÅ
Reset Voltage	V_{rs}		0.35	0.7	1.0	V
Reset Current	I _{rs}			0.1		mA
Output 'L'-Level Voltage	VOL	$V_{CC} = 5V_{J_{sink}} = 5mA$		0.25	0.35	V
		$V_{CC} = 15V, I_{sink} = 10mA$		0.1	0.25	v
		$V_{CC} = 15V, I_{sink} = 100mA$		2.0	2.5	v
Output 'H'-Level Voltage	V _{OH}	$V_{CC} = 5V, I_{source} = 100 \text{mA}$	2.75	3.3		v
		$V_{CC} = 15 V, I_{source} = 100 mA$	12.75	13.3		v

Equivalent Circuit Block Diagram and Pin Assignment

Equivalent Circuit

...

Unit (resistance: Ω)

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.