

LC33832P, S, M, PL, SL, ML-70/80/10

256 K (32768 words \times 8 bits) Pseudo-SRAM

Overview

The LC33832 series is composed of pseudo static RAM that operates on a single 5 V power supply and is organized as 32768 words \times 8 bits. By using memory cells each composed of a single transistor and capacitor, together with peripheral CMOS circuitry, this series achieves ease of use with high density, high speed, and low power dissipation. The LC33832 series can easily accomplish auto-refresh and self-refresh by means of OE/RFSH input. As with asynchronous static RAM, WE input uses a system for incorporating input data at the WE rise, thereby facilitating interfacing with a microcomputer.

The LC33832 series features pin compatibility with 256 K static RAM (the LC36256A series), and available packages are the standard 28-pin DIP with widths of 600 mil or 300 mil, and the SOP with a width of 450 mil.

CE-only refresh can be accomplished by selecting address 256 (A0 to A7) within 4 ms.

Features

- 32768 words × 8 bits configuration
- Single 5 V $\pm 10\%$ power supply
- All input and output (I/O) TTL compatible
- · Fast access times and low power dissipation
- 4 ms refresh using 256 refresh cycle
- CE-only refresh, auto-refresh, and self-refresh
- Low-power version: 100 μ A self-refresh current
- Package

DIP28-pin (600 mil) plastic package: LC33832P, PL DIP28-pin (300 mil) plastic package: LC33832S, SL SOP28-pin (450 mil) plastic package: LC33832M, ML

Package Dimensions

unit: mm

3012A-DIP28

unit: mm

3133-DIP28

• CE access time/OE access time/Cycle time/Current drain

Parameter			LC33832P, S, M, PL, SL, ML						
		-70	-80	-10					
CE access time		70 ns	80 ns	100 ns					
OE access time		30 ns	30 ns 35 ns						
Cycle time		115 ns	115 ns 130 ns						
Current droin	Operating	65 mA	60 mA	50 mA					
Current drain	Standby		1 mA/100 µA (L version)						

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

22897HA (OT)/52595TH (OT)/N1993JN/40893JN A8-9957, 58, 59, No. 4430-1/9

Block Diagram

A01120

Pin Assignment

Pin Functions

A0 to A14	Address input
WE	Read/Write input
OE/RFSH	Output-enable input/ refresh input
CE	Chip-enable input
I/O1 to I/O8	Data input/output
V _{CC}	Power supply
GND	Ground

Functional Logic

CE	OE /RFSH	WE	A0 to A7	A8 to A14	I/O1 to I/O8	State
Н	Н	Х	Х	Х	HZ	Standby
L	L	Н	VX	VX	OUT	Read
L	Н	L	VX	VX	IN	Write
L	н	Н	VX	Х	HZ	CE-only refresh
н	L	Х	Х	Х	HZ	Self-refresh
н	NP	Х	Х	Х	HZ	Auto-refresh

HHigh-level input of V_{IN} = 6.5 V to V_{IH} (min) L....Low-level input of V_{IN} = V_{IL} (max) to -1.0 V

X.....High- or low-level input

NP.....Negative-polarity pulse input

HZ.....High impedance

INInput state

OUT.....Output state

Specifications

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Maximum supply voltage	V _{CC} max	-1.0 to +7.0	V	1
Input voltage	V _{IN}	-1.0 to +7.0	V	1
Output voltage	V _{OUT}	-1.0 to +7.0	V	1
Allowable power dissipation	Pd max	600	mW	1
Output short-circuit current	I _{OUT}	50	mA	1
Operating temperature	Topr	0 to +70	°C	1
Storage temperature	Tstg	-55 to +150	°C	1

Note: 1) Stresses greater than the above listed maximum values may result in damage to the device.

DC Recommended Operating Ranges at Ta = 0 to $+70^{\circ}C$

Parameter	Symbol	min	typ	max	Unit	Note
Supply voltage	V _{CC}	4.5	5.0	5.5	V	2
Input high level voltage	V _{IH}	2.4		6.5	V	2
Input low level voltage	V _{IL}	-1.0		+0.8	V	2

Note: 2) All voltages are referenced to GND.

DC Electrical Characteristics at Ta = 0 to $+70^{\circ}$ C, V_{CC} = 5V \pm 10%

Parameter	Symbol	Conditions	min	max	Unit	Note			
					70ns		65		
Operating current	I _{CCA}	Average current during operation		Access	80ns		60	mA	3,4
				time	100ns		50		
Standby current 1	I _{CCS1}	$\overline{CE} = \overline{OE}/\overline{RFSH} = V_{IH}$					1	mA	
Standby ourrant 2	I _{CCS2}	\Box CE = OE/RFSH = V _{CC} –0.2V		3832P, S	5, M	1	mA		
Standby current 2				3832PL,	SL, ML		100	μA	
Self-refresh current				LC33832P, S, M			mA		
Sell-refresh current	ICCSR	$\overline{CE} = V_{CC} - 0.2V, \overline{OE}/\overline{RFSH} = 0.2V$	LC33832PL, SL, ML				100	μA	
Input leakage current	IIL	$0V \le V_{IN} \le V_{CC}$, pins other than test pin = 0V -10				+10	μA		
Output leakage current	I _{OL}	D _{OUT} disable, 0V≤V _{OUT} ≤V _{CC}				-10	+10	μA	
Output high level voltage	V _{OH}	I _{OUT} = -5mA				2.4		V	
Output low level voltage	V _{OL}	$I_{OUT} = 4.2 \text{mA}$					0.4	V	

Note: 3) All current values are measured at minimal cycle rate. Since current flows immoderately, cycle times may become longer and shorter than shown here.

4) Dependent on output load. Maximum value is value during free state.

Input/Output Capacitance Characteristics at Ta = 25° C, f = 1MHz, V_{CC} = $5V\pm10\%$

<u> </u>		/			
Parameter	Symbol	min	max	Unit	Test conditions
Input capacitance (A0 to A14)	C _{IN1}		5	pF	V _{IN1} = 0 V
Input capacitance (CE, OE/RFSH, WE)	C _{IN2}		7	pF	V _{IN2} = 0 V
Input/output capacitance	C _{I/O}		10	pF	$V_{I/O} = 0 V$

Sampling inspections, and not full-lot inspections, are carried out for these parameters.

AC Electrical Characteristics at Ta = 0 to +70°C, V_{CC} 5V±10% (Notes 5, 6, 7, 8, 9)

			LC338	32P, S,	M, PL,	SL, ML	-		
Parameter	Symbol	-7	70		-80		10	Unit	Note
		min	max	min	max	min	max		
Random read, write cycle time	t _{RC}	115		130		160		ns	
Read-write cycle time	t _{RMW}	165		195		240		ns	
CE pulse width	t _{CE}	70	10000	80	10000	100	10000	ns	
CE precharge time	t _P	35		40		50		ns	
CE access time	t _{CEA}		70		80		100	ns	
OE access time	t _{OEA}		30		35		40	ns	
CE output enable time	t _{CLZ}	10		10		10		ns	
OE output enable time	t _{OLZ}	0		0		0		ns	
WE output enable time	t _{WLZ}	0		0		0		ns	
CE output disable time	t _{CHZ}	0	20	0	25	0	30	ns	10
OE output disable time	t _{OHZ}	0	20	0	25	0	30	ns	10
WE output disable time	t _{WHZ}	0	20	0	25	0	30	ns	10
$\overline{\text{OE}}$ hold time for $\overline{\text{CE}}$	t _{OHC}	0		0		0		ns	
\overline{OE} setup time for \overline{CE}	tosc	10		10		10		ns	
Read command setup time	t _{RCS}	0		0		0		ns	
Read command hold time	t _{RCH}	0		0		0		ns	
Write pulse width	t _{WP}	55		60		70		ns	
Write command hold time	t _{WCH}	55		60		70		ns	
Write command lead time	t _{CWL}	55		60		70		ns	
Input data setup time for \overline{WE}	t _{DSW}	30		35		40		ns	11
Input data setup time for \overline{CE}	t _{DSC}	30		35		40		ns	11
Input data hold time for \overline{WE}	t _{DHW}	0		0		0		ns	11
Input data hold time for \overline{CE}	t _{DHC}	0		0		0		ns	11
Address setup time for \overline{CE}	t _{ASC}	0		0		0		ns	12
Address hold time for \overline{CE}	t _{AHC}	15		20		25		ns	12
Auto-refresh cycle time	t _{FC}	115		130		160		ns	
\overline{RFSH} delay time for \overline{CE}	t _{RFD}	35		40		50		ns	
RFSH pulse width (auto-refresh)	t _{FAP}	75	8000	80	8000	80	8000	ns	13
RFSH precharge time (auto-refresh)	t _{FP}	30		30		30		ns	13
RFSH active CE delay time (auto-refresh)	t _{FCE}	135		160		190		ns	13
RFSH pulse width (self-refresh)	t _{FAS}	8000		8000		8000		ns	13
\overline{RFSH} precharge \overline{CE} delay time (self-refresh)	t _{FRS}	135		160		190		ns	13
Refresh time	t _{REF}		4		4		4	ms	
Rise and fall time	t _T	3	50	3	50	3	50	ns	

Continued on next page.

Continued from preceding page.

- Note: 5) To accomplish internal initialization, \overline{CE} and $\overline{OE}/\overline{RFSH}$ are fixed at V_{IH} for an interval of 1 ms when V_{CC} reaches the specified voltage after power is switched on.
 - 6) Measured at $t_T = 5$ ns.
 - 7) When measuring input signal timing, V_{IH} (min) and V_{IL} (max) are reference levels.
 - 8) Measured using an equivalent of 100 pF and two standard TTL loads.
 - 9) $\overline{\text{OE}/\text{RFSH}}$ input functions as output-enable input ($\overline{\text{OE}}$) when $\overline{\text{CE}} = V_{\text{IL}}$, and as refresh input ($\overline{\text{RFSH}}$) when $\overline{\text{CE}} = V_{\text{IH}}$.
 - 10) t_{CHZ}, t_{OHZ}, and t_{WHZ} are defined as the time until output enters the open circuit state and the output voltage level becomes immeasurable.
 - 11) As with ordinary static RAM, write data is incorporated at the rise of \overline{WE} input or \overline{CE} input, whichever is earlier, and write data is therefore held during t_{DSW} , t_{DSC} , t_{DHW} , or t_{DHC} .
 - 12) Because address input is incorporated at the fall of \overline{CE} , the address is maintained during t_{ASC} or t_{AHC} .
 - 13) Auto-refresh and self-refresh are determined by $\overline{OE/RFSH}$ pulse width when $\overline{CE} = V_{IH}$, and are defined as auto-refresh when below t_{FAP} (max), or as self-refresh when above t_{FAS} (min). In order to activate \overline{CE} after the completion of each refresh, t_{FCE} must be assured for auto-refresh, or t_{FRS} must be assured for self-refresh.

Write Cycle

A01179

CE-Only Refresh Cycle

Note: A8 to A14: "H" or "L"

: "H" or "L"

A01181

Self-Refresh Cycle

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - In the second second
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.