		CMOS LSI
	No. 2412A	LC6568D, 6568H
SANYO		8K-Byte ROM-Contained Single-Chip 4-Bit Microcomputers with FLT/LED Drivers, Comparator Input

The LC6568D/H are single-chip 4-bit microcomputers that contain an 8K-byte ROM, 1K-bit RAM, and have 64 pins. The LC6568D/H have 57 pins for ports – 28 pins for 7 input/output common ports, 21 pins for 6 output ports, and 8 pins for 2 input ports. The LC6568D/H have specific ports that are used to provide the interrupt function, 4-bit/8-bit serial input/output function and burst pulse output function. Each of the 28 pins for input/output common ports contains a driver with a withstand voltage of 15V max. and a drive current of 15mA max. and each of the 21 pins for output ports contains a high-voltage output driver of the P-channel open drain type. Since the high-voltage output driver can be used as general-purpose high-current driver as well as fluorescent tube driver, the LC6568D/H can be also widely used in applications where no fluorescent display is provided.

The LC6568D/H are the same as our LC6500 series in the basic architecture of the CPU and the instruction set, but are made more powerful in the stack level and also made easier-to-use in the standby function.

Features

Ordering number: EN2412A

- Instruction set with 81 instructions (Common to the LC6500 series)
- On-chip 8192-byte ROM, 1024-bit RAM
- Instruction cycle time: 2.77 μ s (D version, V_{DD} = 4 to 6V) 0.92 μ s (H version, V_{DD} = 4.5 to 6V)
- Serial input/output interface x 1 (4 bits/8 bits program-selectable)
- I/O ports: 57 pins in all Input ports
 B pins
 Input/output common ports
 28 pins: 15V max., 15mA max., LED drivable, pull-up resistance option available
 Output ports
 21 pins: VDD-45V withstand voltage, FLT drivable, common with general-purpose output, pull-down resistance option available

Output level during reset: For ports C, D, output (H or L) during reset may be specified portwise by option.

Interrupt function Timer interrupt: 1 line

INTO to 3 pin or serial I/O interrupt: 1 line

- Stack level: 8 levels (Common with interrupt)
- Timer: 4-bit prescaler +8-bit programmable timer
- Burst pulse (64 x cycle time, dury 50%) output function
- Oscillator option Circuit mode: Ceramic resonator mode, RC mode, external clock mode (384kHz to 4.33MHz) Predivider option: 1/1, 1/3, 1/4
- Standby function: Standby function provided by the HALT instruction. Provides the function to absorb the OSC stabilizing time in the ceramic resonator mode.
- Supply Voltage: 4 to 6V (D version)
- 4.5 to 6V (H version)
- Package: DIP 64 shrink type, QIP64A
- Evaluation LSI: LC6595 (Evaluation chip) + EVA800-TB6568 (Evaluation chip board), LC65PG68 (Piggyback)
- 4-channel comparator input
- 4-channel external interrupt input (1 vector)

SANYO Electric Co., I.td. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Development Support Tools

The following development tools are available.

1. Document support (1) Documentation LC6568 User's Manual (2) Development Tools User's Manual, EVA800-LC6568 2. Software support (1) MS-DOS (Note) for the host system and cross-assembler software i. Host processor control program ii. LC65S.EXE cross assembler 3. Hardware support (1) Evaluation chip: LC6595 (2) Piggyback microcomputer: LC65PG68 (3) Emulator: EVA-800 or EVA-850 emulator and evaluation boards Host processer control program
LC65S.EXE cross assembler EVA-800/EVA-850 emulator CN1 CN2 L06595 CN3 EVA800-TB6568 evaluation board SAP-64 SAS-64 SCP64075 Pin 1 User's application board

Fig. 1 Appearance of Development Support System

Fig. 2 Piggyback (For Program Evaluation)

(Note) MS-DOS is a registered trademark of Microsoft Corporation

2 15

SANYO: QIP64A

System Block Diagram

RAM	: Data memory	ROM	: Program memory
F	: Flag	PC	: Program counter
WR	: Working register	INT	: Interrupt control
AC	: Accumulator	IR	: Instruction register
ALU	: Arithmetic and logic unit	I.DEC	: Instruction decoder
DP	: Data pointer	CF, CSF	: Carry flag, carry save flag
E	: E register	ZF, ZSF	: Zero flag, zero save flag
CTL	: Control register	EXTF	: External interrupt request
OSC	: Oscillator	TMF	: Internal interrupt request
ТМ	: Timer	INTF	: Interrupt request flag
STS	: Status register	INTEN	: Interrupt enable flag

(Note) SI, SO, SCK: Common to PF0 to PF2 INT0 to INT3: Common to PB0 to PB3 REFA, CMPA or PI2, PI3 port: Option-selectable REFB, CMPB1 to CMPB3 or PJ0 to PJ3 port: Option-selectable

Pin Description

•

Pin Name	Pins	1/0	Functions	Options	During Reset
V _{DD} V _{SS}	1 1	_	Power supply	_	-
OSC1 OSC2	1	Input Output	 Pin for externally connecting R, C or a ceramic resonator for system clock generation. For the external clock mode, the OSC2 pin is open. 	 External clock input 2-pin RC OSC 2-pin ceramic resonator OSC Predivider option No predivider 1/3 predivider 1/4 predivider 	_
PA ₀ PA ₁ PA ₂ PA ₃	4	Input	 Input port A0 to 3 (Low-threshold input) 4-bit input (IP instruction) Single-bit decision (BP, BNP instructions) 	-	_
PB ₀ /INT <u>0</u> PB ₁ /INT <u>1</u> PB ₂ /INT <u>2</u> PB ₃ /INT ₃	4	Input	 Input port B0 to 3 4-bit input (IP instruction) Single-bit decision (BP, BNP instructions) Standby is controlled by the PB3. The PB3 pin must be free from chattering during the HALT instruction execution cycle. PB0 to 3: Common with INT0 to 3 Program-selectable (1 interrupt vector, 4 senses) 	_	 Individual inter- rupt flag (INTOF to INT3F): Reset Individual inter- rupt enable flag (INT0EN to INT3EN): Disable mode
PC0 PC1 PC2 PC3	4	Input/ Output	 Input/output common port C₀ to 3. 4-bit input (IP instruction) 4-bit output (OP instruction) Single-bit decision (BP, BNP instructions) Single-bit set/reset (SPB, RPB instructions) Output ("H" or "L") during reset may be specified by option. 	 (1) Open drain type output (2) With pull-up resistance (3) Output during reset: "H" (4) Output during reset: "L" (1), (2): Specified bit by bit. (3), (4): Specified in a group of 4 bits. 	 "H" output "L" output (Option-select- able)
PD0 PD1 PD2 PD3	4	Input/ Output	 Input/output common port D₀ to 3. The functions, options are the same as for the PC₀ to 3. 	Same as for the PC ₀ to 3.	Same as for the PC ₀ to 3.
PE0 PE1 PE2 PE3	4	Input/ Output	 Input/output common port E0 to 3. 4-bit input (IP instruction) 4-bit output (OP instruction) Single-bit decision (BP, BNP instructions) Single-bit set/reset (SPB, RPB instructions) PE0: With burst pulse (64Tcyc) output function 	 (1) Open drain type output (2) With pull-up resistance (1), (2): Specified bit by bit. 	"H" output

Continued on next page.

Pin Name	Pins	1/0	Functions	Options	During Reset
PF ₀ /SI PF ₁ /SO PF ₂ /SCK	3	Input/ Output	 Input/output port F0 to 2 The functions, options are the same as for the PE0 to 3. However, no burst pulse output function is provided. PF0 to 2: Also used for serial interface. Program-selectable. S1: Serial input port S0: Serial output port SCK: Serial clock input/output 	Same as for the PE0 to 3.	Sample as for the PE0 to 3. Serial port: Disable
PG0 PG1 PG2 PG3	4	Input/ Output	 Input/output common port G₀ to 3. The functions, options are the same as for the PE₀ to 3. However, no burst pulse output function is provided. 	Same as for the PE0 to 3.	Same as for the PE0 to 3.
РН _О	1	Input/ Output	 Input/output common port H₀. The functions, options are the same as for the PG₀ to 3. This port consists of a single bit. 	Same as for the PG ₀ to 3.	Same as for the PG0 to 3.
PI0 PI1 PI2/REFA PI3/CMPA	4	Input/ Output	 Input/output common port I0 to3. (Port input/output option selected mode) The functions, options are the same as for the PG0 to 3. 	Same as for the PG0 to 3.	Same as for the PG0 to 3.
_	2		 Comparator input option selected mode REFA: Comparator reference voltage input CMPA: Comparator input 		• = = = = = = = = = = = = = = = = = = =
PJ ₀ /REFB PJ ₁ /CMPB1 PJ ₂ /CMPB ₂ PJ ₃ /CMPB ₃	4	Input/ Output	 Input/output common port J0 to 3. (Port input/output option selected mode) The functions, options are the same as for the PG0 to 3. 	Same as for the PG0 to 3.	Same as for the PG _O to 3.
	4	Input	 Comparator input option selected mode REFB: Common reference voltage input for CMPB1 to 3 CMPB1 to 3: Comparator input 4-bit input together with CMPA (BANK IP) Single-bit decision (BANK BP, BNP) (at DPL = 9) 		

Continued on next page.

.

Pin Name	Pins	1/0	Functions	Options	During Reset
РК ₀ РК1 РК2 РК3	4	Output	 Output port K₀ to 3 (Segment driver output) 4-bit output (OP instruction) Single-bit decision (BP, BNP instructions) Single-bit set/reset (SPB, RPB instructions) 	 (1) Open drain type output (2) With pull-down resistance (1), (2): Specified bit by bit. 	"L" output
PL0 PL1 PL2 PL3	4	Output	 Output port L0 to 3 (Segment driver output) The functions, options are the same as for the PK0 to 3. 	Same as for the PK ₀ to 3.	Same as for the PK0 to 3.
PM0 PM1 PM2 PM3	4	Output	 Output port M₀ to 3 (Digit driver Output) The functions, options are the same as for the PK₀ to 3. 	Same as for the PK ₀ to 3.	Same as for the PK0 to 3.
PN0 PN1 PN2 PN3	4	Output	 Output port N₀ to 3 (Digit driver output) The functions, options are the same as for the PK₀ to 3. 	Same as for the PK ₀ to 3.	Same as for the PK0 to 3.
PO0 PO1 PO2 PO3	4	Output	 Output port O₀ to 3 (Digit driver output) The functions, options are the same as for the PK₀ to 3. 	Same as for the PK ₀ to 3.	Same as for the PK0 to 3.
PPO	1	Output	 Output port P₀ (Digit driver output) The functions, options are the same as for the PK₀ to 3. This port consists of a single bit. 	Same as for the PK ₀ to 3.	Same as for the PK0 to 3.
RES	1	Input	 System reset input For power-up reset, "L" level is applied for 4 clock cycles or more. 	-	_
TEST	1	Input	LSI test pin Normally connected to VSS	— .	-
Vp	1		Power supply pin for pull-down resistance		_

Oscillator Circuit Option

Option Name	Circuit	Conditions, etc.
1. External Clock		Input: Schmitt type.
2. 2-pin RC OSC	Cext OSC1	• Input: Schmitt type.
3. Ceramic Resonator OSC	Ceramic R resonator OSC2 H C2	· · · · · · · · · · · · · · · · · · ·

Predivider Option

Option Name	Circuit	Conditions, etc.
1. No predivider	OSC circuit Solution generator	 Applicable to all of 3 OSC options. The OSC frequency, external clock do not exceed 1444 kHz. (LC6568D) The OSC frequency, external clock do not exceed 4330 kHz. (LC6568H) Refer to Table of OSC, Predivider Option (Table 2).
2. 1/3 predivider	o in fosc 3 in fosc 3 in 1/3 pre- divider 0 0 0 0 0 0 0 0 0 0 0 0 0	 Applicable to only 2 options of external clock, ceramic resonator OSC. The OSC frequency, external clock do not exceed 4330 kHz. Refer to Table of OSC, Predivider Option (Table 2).
3. 1/4 predivider	fosc <u>fosc</u>	 Applicable to only 2 options of external clock, ceramic resonator OSC. The OSC frequency, external clock do not exceed 4330 kHz. Refer to Table of OSC, Predivider Option (Table 2).

.

Options of Ports C, D Output Level during Reset

For input/output common ports C, D, either of the following two output levels may be selected in a group of 4 bits during reset by option.

Option Name	Conditions, etc.
1. Output during reset: "H" level	All of 4 bits of ports C, D
2. Output during reset: "L" level	All of 4 bits of ports C, D

Options of Port Output Configuration

For each input/output common port, either of the following two output configurations may be selected by option (bitwise).

Option Name	Circuit	Applicable Ports
 Open drain type output 		Ports C, D, E, F, G, H, I, J
		Ports K, L, M, N, O, P
2. Output with pull-up resistance		Ports C, D, E, F, G, H, I, J (Note) Not applicable to PI ₂ /REFA, PI ₃ /CMPA, PJ ₀ /REFB, PJ ₁ to 3/CMP1 to 3 ports at the com- parator input function option selected mode
3. Output with pull-down resistance		Ports K, L, M, N, O, P

Port input/output Comparator input Option

- For six ports of PI₂/REFA, PI₃/CMPA, PJ₀/REFB, PJ₁/CMPB1, PJ₂/CMPB2, PJ₃/CMPB3, either of the two options

 port input/output, comparator input may be selected. (Note)
- Selection between port input/output and comparator input may be made in bit units.
 - (a) Port input/output
 - (b) Comparator input

Pin	Circuit Configuration	n Conditions, etc.
PI2/REFA PI3/CMPA PJ0/REFB PJ1/CMPB1 PJ2/CMPB2 PJ3/CMPB3	(REF)	B Selection of (b) port input/output option permits either of the two port output type options (OD, PU) to be selected.
	Option SW	
	Port input/output option b	
	Comparator input option a]

(Note) Selection of option for PI3/CMPA provides automatic selection of option for PI2/REFA. Selection of option for PJ1/CMPB1, PJ2/CMPB2, PJ3/CMPB3 provides automatic selection of option for PJ0/REFB.

LC6568D

.

1.	Absolute Maximum Ratings/	T. = 25°C \	/cc =0V		min	typ max	unit
••	Maxumum Supply Voltage		-33	VDD	-0.3	+7.0	V
	Output Voltage	VO(1)		OSC2		up to voltage	v
	-	0(1)				generated	
		VO(2)		Port K, L,	VDD45	V _{DD} +0.3	V
				M, N, O, PO			
	Input Voltage	VI(1)		OSC1 (Note	1) –0.3	V _{DD} +0.3	V
				TEST, RES	_		
		VI(2)		Port A, B	-0.3	+15	V
		VI(3)			VDD45	V _{DD} +0.3	V
	Input/Output Voltage	VIO(1)		Port of OD ty		+15	V
				(Port C, D, E	•		
				Fo to F ₂ , G,			
		Vicio		Hg, I, J) Bort of BL to		V 10.2	v
		VIO(2)		Port of PU ty		V _{DD} +0.3	V
				(Port C, D, E, F ₀ to F ₂ , G,	,		
				H ₀ , I, J)			
	Peak Output Current	IOP(1)		Port C, D, E,	2	+15	mA
		·OF(1)		F ₀ to F ₂ , G,	-	10	0.7
				H ₀ , I, J			
		IOP(2)		Port K, L	-10	0	mΑ
		IOP(3)		Port M, N, O,	-30	0	mA
				Po			
	Allowable Power Dissipation	P _d max	$T_a =30 \text{ to } +70^{\circ}\text{C}$	DIP 64S		600	mW
		-	-	QIP 64		430	mW
	Operating Temperature	Topr			-30	+70	°C
	Storage Temperature	T _{stg}			-55	+125	°c
	Average Output Current	OA(1)	Per pin over the period of	Port C, D, E,	-2	+15	mΑ
			100msec.	F _O to F ₂ , G,	н _О ,		
				I, J			
		IOA(2)	Per pin over the period of	Port K, L	-10	0	mΑ
			100msec.				
		IOA(3)	Per pin over the period of	Port M, N, O	, —30	0	mΑ
			100msec.	Po			-
		$\Sigma I_{OA}(1)$	Total current of PC0 to 3,		-30	+50	mΑ
			PD0 to 3, PE0 to 3				
		Ste con	(Note 2)		20	. 50	
		$\Sigma IOA(2)$	Total current of PF0 to 2,		-30	+50	mΑ
			PG0 to 3, PH0, PI0 to 3, PJ0 to 3 (Note 2)		,		
		$\Sigma I_{OA(3)}$	Total current of PK0 to 3,		-50	0	mA
		=-0A(3)	PLo to 3, PMo to 3	1. 1. T	00	0	1117
			(Note 2)				
		$\Sigma IOA(4)$	Total current of PNO to 3,		-50	0	mA
			PO0 to 3, PP0 (Note 2)				
2.	Allowable Operating Conditi	ons/T _a =3	30 to +70°C, V _{SS} = 0V, V _{DD}	=4.0 to 6.0V			
			therwise specified		min		unit
	Operating Supply Voltage	VDD		VDD	4.0	6,0	V
	Standby Supply Voltage	Vst	RAM, register hold(Note 3)	VDD	1.8	6.0	V.
	"H"-Level Input Voltage	VIH(1)		Port A	1.9	+13.5	V
		VIH(2)	Output Nch Tr OFF	Port of OD	0.7V _{DD}	+13.5	V
				type (Port C to I)			
		Victor	Output Nah Tr OFF	(Port C to J)		V	
		VIH(3)	Output Nch Tr OFF	Port of PU	0.7V _{DD}	VDD	V
				type (Port C to J)			
		VIIIA	Output Nch Tr OFF	SCK, SI	0.8V _{DD}	+13.5	v
		VIH(4)	Supurnen n VEF	of OD type	0.0000	F13.0	v
				of op type	Con	tinued on next	Dage
					CON		hage.

LC6568D				min	typ max	u
"H"-Level Input Voltage	VIH(5)	Output Nch Tr OFF	SCK, SI	0.8V _{DD}	V _{DD}	u
	VIH(6)	Fig. 7	of PU type High Vt input circuit	V _{DD} -0.5	+13.5	
	VIH(7)	Fig. 7	of Port B3 Low Vt	0.5V _{DD}	+13.5	
			input circuit of Port B3			
	VIH(8)	Fig. 3 VDD: 1.8 to 6.0V	RES	0.8V _{DD}	VDD	
	VIH(9)		PB0 to 2, INT0 to 3	0.8VDD	+13.5	
	VIH(10)	External clock mode	osci	0.8V _{DD}	VDĐ	
"L"-Level Input Voltage	VIL(1)		PA0 to 3	VSS	+0.5	
	VIL(2)		PC to PJ, TEST	VSS	0.3V _{DD}	
	VIL(3)		PB0 to 2 SCK, SI,	V _{SS}	0.25V _{DD}	
	<u>.</u>		INT ₀ to 3		• • • • •	
	VIL(4)	Eia 7	RES	VSS	0.25V _{DD}	
	VIL(5) VIL(6)	Fig. 7 Fig. 7 V _{DD} : 1.8 to 6.0V	PB3 PB3	VSS	0.9 0.3	
	VIL(0) VIL(7)	External clock mode	OSC1	V _{SS} V _{SS}	0.25V _{DD}	
Operating Frequency	fop		OSC1	384	1444	k
(Cycle Time)	(TCYC)		OSC2	(10.4)	(2.77)	- ù
Ceramic Resonator Oscillati Constants			OSC1 OSC2		1, Table 1.	
External Clock Conditions						
Frequency	fext		OSC1 (Fig. 4	4) See T	fable 2,	
"H"-Level/"L"-Level Clock Pulse Width	texth/te	EXTL	OSC1 (Fig. 4	4) 90		
Rise/Fall Time	textr/te	XTF	OSC1 (Fig.	4)	30	
2-pin RC Oscillation						
2-pin RC Oscillation External Capacitance	CFXT		OSC1, OSC	2 (Fig. 9) 2:	20±5%	
2-pin RC Oscillation External Capacitance External Resistance	Cext ^R ext		OSC1, OSC OSC1, OSC			
External Capacitance External Resistance . Electrical Characteristics/T _a	REXT = -30 to +	70°C, VSS = 0V, VDD = 4.0 to	OSC1, OSC	2 (Fig. 9) 6	i.8±1%	
External Capacitance External Resistance . Electrical Characteristics/T _a un	REXT a = -30 to + aless otherwi	ise specified	OSC1, OSC2 6.0V	2 (Fig. 9) 6 min	i.8±1% typ max	u
External Capacitance External Resistance . Electrical Characteristics/T _a	REXT = -30 to +	ise specified Output Nch Tr OFF	OSC1, OSC2 6.0V Port of OD 1	2 (Fig. 9) 6 min type	i.8±1%	ι
External Capacitance External Resistance . Electrical Characteristics/T _a un	REXT a = -30 to + aless otherwi	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr)	OSC1, OSC2 6.0V	2 (Fig. 9) 6 min type	i.8±1% typ max	u
External Capacitance External Resistance Electrical Characteristics/T _a un	REXT = -30 to + nless otherwi H(1)	ise specified Output Nch Tr OFF (Including OFF leakage	OSC1, OSC2 6.0V Port of OD to (Port C to J)	2 (Fig. 9) 6 min type)	i.8±1% typ max	u
External Capacitance External Resistance Electrical Characteristics/T _a un	REXT a = -30 to + aless otherwi	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) V _{IN} =+13.5V Output Nch Tr OFF (Including OFF leakage	OSC1, OSC2 o 6.0V Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J)	2 (Fig. 9) 6 min type)	i.8±1% typ max +5.0	L
External Capacitance External Resistance Electrical Characteristics/T _a un	REXT = -30 to + nless otherwi H(1)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr)	OSC1, OSC2 o 6.0V Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1	2 (Fig. 9) 6 min type) cype)	i.8±1% typ max +5.0	L
External Capacitance External Resistance Electrical Characteristics/T _a un "H"-Level Input Current	REXT = -30 to + pless otherwi ^I IH(1) ^I IH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD	OSC1, OSC2 Port of OD to (Port C to J) Port A, B Port of PU to (Port C to J) OSC1 (External closed)	2 (Fig. 9) 6 min type) cype) ock mode)	i.8±1% typ max +5.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un	REXT = -30 to + nless otherwi H(1)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External clo Port of OD t	2 (Fig. 9) 6 min type) cype) ock mode) type —1.0	i.8±1% typ max +5.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un "H"-Level Input Current	REXT = -30 to + pless otherwi ^I IH(1) ^I IH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD	OSC1, OSC2 o 6.0V Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External clic Port of OD t (Port C to J)	2 (Fig. 9) 6 min type) cype) ock mode) type —1.0	i.8±1% typ max +5.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un "H''-Level Input Current	REXT = -30 to + pless otherwi ^I IH(1) ^I IH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External clu Port of OD t (Port C to J) Port C to J) Port A, B	2 (Fig. 9) 6 min type) cype) ock mode) type —1.0	i.8±1% typ max +5.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un "H"-Level Input Current	REXT = -30 to + pless otherwi ^I IH(1) ^I IH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External clic Port of OD t (Port C to J) Port A, B OSC1	2 (Fig. 9) 6 min type) cype) cock mode) type —1.0)	i.8±1% typ max +5.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un "H"-Level Input Current	REXT = -30 to + pless otherwi ¹ IH(1) ¹ IH(2) ¹ IL(1)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External cle Port of OD t (Port C to J) Port A, B OSC1 (External cle Cosc1 (External cle	2 (Fig. 9) 6 min type) cype) cock mode) type —1.0) ock mode)	i.8±1% typ max +5.0 +1.0	u
External Capacitance External Resistance Electrical Characteristics/T _a un "H''-Level Input Current	REXT = -30 to + pless otherwi ^I IH(1) ^I IH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External cle Port of OD t (Port C to J) Port A, B OSC1 (External cle Port A, B OSC1 (External cle Port A, C to J) Port A, C to J)	2 (Fig. 9) 6 min type) cype) cock mode) type —1.0) ock mode) ype —1.3	i.8±1% typ max +5.0 +1.0	u
External Capacitance External Resistance Electrical Characteristics/T _a ""H"'-Level Input Current	REXT = -30 to + pless otherwi ¹ IH(1) ¹ IH(2) ¹ IL(1)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS VIN=VSS	OSC1, OSC2 Port of OD t (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External cle Port of OD t (Port C to J) Port A, B OSC1 (External cle Port A, B OSC1 (External cle Port of PU t (Port C to J) Port A, C to J) RES	2 (Fig. 9) 6 min type) cype) cock mode) type1.0) cock mode) ype1.3	i.8±1% typ max +5.0 +1.0	r
External Capacitance External Resistance Electrical Characteristics/T _a un "H"-Level Input Current	REXT = -30 to + bless otherwi ¹ IH(1) ¹ IH(2) ¹ IL(1) ¹ IL(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS	OSC1, OSC2 Port of OD to (Port of OD to (Port C to J) Port A, B Port of PU to (Port C to J) OSC1 (External clopert (Port C to J) Port A, B OSC1 (External clopert (External clopert) Port A, B OSC1 (External clopert) Port of PU to (Port C to J) RES Port of PU	2 (Fig. 9) 6 min type) cype) cock mode) type1.0) cock mode) ype1.3	i.8±1% typ max +5.0 +1.0	u
External Capacitance External Resistance Electrical Characteristics/T _a ""H"'-Level Input Current	REXT = -30 to + bless otherwi ¹ IH(1) ¹ IH(2) ¹ IL(1) ¹ IL(2) ¹ IL(2) ¹ IL(2) ¹ IL(3)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS VIN=VSS	OSC1, OSC2 Port of OD 1 (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External cle Port of OD 1 (Port C to J) Port A, B OSC1 (External cle Port of PU t (Port C to J) Port A, B OSC1 (External cle Port of PU t (Port C to J) RES Port of PU type	2 (Fig. 9) 6 min type) cype) cock mode) type1.0) cock mode) ype1.3) 45 VDD-1.2	i.8±1% typ max +5.0 +1.0	u
External Capacitance External Resistance Electrical Characteristics/T _a ""H"'-Level Input Current	REXT = -30 to + hless otherwi H(1) H(2) L(2) L(2) L(3) VOH{1}	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS VIN=VSS VIN=VSS IOH=50µA	OSC1, OSC2 Port of OD to (Port of OD to (Port C to J) Port A, B Port of PU to (Port C to J) OSC1 (External clopert (Port C to J) Port A, B OSC1 (External clopert (Port C to J) Port A, B OSC1 (External clopert (Port C to J) RES Port of PU to type (Port C to J)	2 (Fig. 9) 6 min type) cype) ock mode) type1.0) ock mode) ype1.3) 45 VDD1.2	i.8±1% typ max +5.0 +1.0	u
External Capacitance External Resistance Electrical Characteristics/T _a ""H"'-Level Input Current	REXT = -30 to + hless otherwi ¹ IH(1) ¹ IH(2) ¹ IL(2) ¹ IL(2) ¹ IL(2) ¹ IL(2) ¹ IL(3) VOH(1) VOH(2)	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS VIN=VSS IOH=-50µA	OSC1, OSC2 Port of OD 1 (Port C to J) Port A, B Port of PU t (Port C to J) OSC1 (External cle Port of OD 1 (Port C to J) Port A, B OSC1 (External cle Port of PU t (Port C to J) RES Port of PU t (Port C to J) RES Port of PU type (Port C to J) Port A, L	2 (Fig. 9) 6 min type) cype) cock mode) type1.0) cock mode) type1.3) 45 VDD-1.2	i.8±1% typ max +5.0 +1.0	u ı
External Capacitance External Resistance Electrical Characteristics/T _a ""H"'-Level Input Current	REXT = -30 to + hless otherwi H(1) H(2) L(2) L(2) L(3) VOH{1}	ise specified Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=+13.5V Output Nch Tr OFF (Including OFF leakage current of Nch Tr) VIN=VDD Output Nch Tr OFF VIN=VSS Output Nch Tr OFF VIN=VSS VIN=VSS VIN=VSS IOH=50µA	OSC1, OSC2 Port of OD to (Port of OD to (Port C to J) Port A, B Port of PU to (Port C to J) OSC1 (External clopert (Port C to J) Port A, B OSC1 (External clopert (Port C to J) Port A, B OSC1 (External clopert (Port C to J) RES Port of PU to type (Port C to J)	2 (Fig. 9) 6 min type) cype) cock mode) type1.0) cock mode) type1.3) 45 VDD-1.2	i.8±1% typ max +5.0 +1.0	

				min	typ		unit .
"L"-Level Output Voltage	VOL(1)	IOL=10mA, Other ports: ΣiOLmax	Port C, D, E, F ₀ to F ₂ , G, H ₀ , I, J			1.5	V
	Vol(2)	IOL=2mA, Each port: IOL=2mA	Port C, D, E, F ₀ to F ₂ , G, H ₀ , I, J			0.5	v
	VOL(3)	Vp=—35V, Output Pch Tr OFF Output open	Port of PD type (Port K to P)			-33	v
Dutput OFF Leakage Current	IOFF(1)	Output Pch Tr OFF VOUT=VDD	Port of OD type (Port K to P)			+30	μA
	IOFF(2)	Output Pch Tr OFF VOUT=VDD-40V	Port of OD type (Port K to P)	-30			μA
Hysteresis Voltage	Vhys		RES, INTO to 3 SCK, SI, OSC1 of Schmitt type	0.1	IV _{DD}		V
Pull-up Resistance	Rpp	V _{DD} : 5.0V	(Note 5) Port of PU type (Port C to J)		14		kΩ
Pull-down Resistance	RPD	V _{DD} : 5.0V	Port of PD type (Port K to P)	50		200	kΩ
Current Dissipation		mode, Output Nch Tr, Pch Tr					
2-Pin RC Oscillation Mode	DDOP(1)	Fig. 9 f _{osc} =750kHz (typ)	VDD		2.5	8	mΑ
Ceramic Resonator	DDOP(2)	Fig. 1 4MHz, 1/3 predivider	VDD		8	15	
Oscillation Mode	DDOP(3)	Fig. 1 4MHz, 1/4 predivider	V _{DD}		8	15	
	DDOP(4)	Fig. 1 3MHz, 1/3 predivider	V _{DD}		6.5	14	mΑ
	IDDOP(5)	Fig. 1 3MHz, 1/4 predivider	V _{DD}		6.5	14	mΑ
	DDOP(6)	Fig. 1 400kHz	VDD		1.0	4.5	mΑ
	DDOP(7)	Fig. 1 800kHz	V _{DD}		2.0	6	mΑ
External Clock Mode	IDDOP(8)	384kHz to 1444kHz, 1/1 predivider	V _{DD}		3.5	9	mΑ
		1152kHz to 4330kHz, 1/3 predivider	VDD		8	15	mΑ
		1536kHz to 4330kHz, 1/4 predivider	VDD		8	15	mĄ
Standby Mode	IDDST	VIN≕VDD Output Nch Tr OFF Output Pch Tr OFF Output pin open			0.05	10	μA
Ceramic Resonator Oscillatio	n						
Oscillation Frequency	fCFOSC (Note 4)	1/1 (10µs) 400K	OSC1, OS2 (Fig. 1)	392	400	408	kHz
		1/1 (5μs) 800K	OSC1, OSC2 (Fig. 1)	784	800	816	kHz
		1/3 (4µs) 3M 1/4 (5.33µs)	OSC1, OSC2 (Fig. 1)	2.94	3	3.06	
		1/3 (3μs) 4Μ 1/4 (4μs)	OSC1, OSC2 (Fig. 1)	3.92	4	4.08	MHz
Oscillation Stabilizing Period	tCFS		-			10	ms
RC Oscillation Oscillation Frequency	fCRS	1/1 predivider Cext=220pF±5%	OSC1, OSC2 (Fig. 9)	554	750	1235	kHz
Pin Capacitance	СР	Rext=6.8kΩ±1% f=1MHz Other than pins to be tested: VIN=VSS			10		рF

LC6568D

4. Serial Interface Characteristics/V_{SS} = 0V, $T_a = -30^{\circ}C$ to +70°C,

	VDD =4.	OV to 6.0V unless otherwise s	epcified	min typ n	max u	Init
Serial Clock			-			
Input Clock Cycle Time	tCKCY(1)	Fig. 5	SCK	3.0		μs
Output Clock Cycle Time	tCKCY(2)	Fig. 5	SCK	64 x TCYC		μs
Input Clock ''L''-Level Pulse Width	tCKL(1)	Fig. 5	SCK	1.0		μs
Output Clock "L"-Level Pulse Width	^t CKL(2)	Fig. 5	SCK	32 x TCYC		μs
Input Clock "H"-Level Pulse Width	^t CKH(1)	Fig. 5	SCK	1.0		μs
Output Clock "H"-Level Pulse Width	^t CKH(2)	Fig. 5	SCK	32 x TCYC		μs
Serial Input						
Data Setup Time	^t ICK	Specified for ↑ of SCK, Fig. 5	SI	0.5		μs
Data Hold Time	tскі	Specified for ↑ of SCK, Fig. 5	SI	0.5		μs
Serial Output						
Output Delay Time	ţСКО	Specified for ↓ of SCK, Nch OD only: External 1kohm, external 50pF Fig. 5	SO		0,5	μs
Pulse Output						
Period	tPCY	Fig. 6	PEO	64 x TCY	(C	μs
"H"-Level Pulse Width	tPH (TCYC=4 x System clock	PEO	32 x TCYC±10		μs
"L"-Level Pulse Width	tpl	period, Nch OD only: External 1kohm, external 50pF	PEO	32 x TCYC±10		μs

5. Comparator Characteristics	/V _{SS} =0V, 1	$\Gamma_a = -30^{\circ}C$ to +70 $^{\circ}C$, V _{DD}	= 4.5V to 6.0V	•			
	unless other	rwise specified		min	typ	max	unit
Comparator Characteristics							
Input Voltage Range	VCMIN		PI3, PJ1 to 3	Vss+1.0	Ve	n-1.5	v
Response Speed	TRS	100mV overdrive mode		00		50	μs
Offset Voltage	VOFS	V _{CMIN} =V _{SS} +1.0V to V _{DD} 1.5V			±20	±100	mV

(Note 1) When oscillated internally under the oscillating conditions in Fig. 1, up to the oscillation amplitude generated is allowable.

(Note 2) Average over the period of 100msec.

(Note 3) Operating supply voltage V_{DD} must be held until the standby mode is entered after the execution of the HALT instruction.

The PB3 pin must be free from chattering during the HALT instruction execution cycle.

(Note 4) fCFOSC represents an oscillatable frequency.

(Note 5) The OSC1 becomes the Schmitt type when the OSC option is the 2-pin RC OSC or external clock OSC.

(Note 6) When mounting the QIP version on the board, do not dip it in solder.

Fig. 1 Ceramic Resonator Oscillation Circuit

Fig. 2 Oscillation Stabilizing Period

4 MHz (Murata)	C1	33pF ± 10%
CSA4.00MG	C2	33pF ± 10%
4 MHz (Kyocera)	C1	33pF ± 10%
KBR4.0MS	C2	33pF ± 10%
3 MHz (Murata)	C1	33pF ± 10%
CSA3.00MG	C2	33pF ± 10%
3 MHz (Kyocera)	C1	33pF ± 10%
KBR3.0MS	C2	33pF ± 10%

Table 1 Constants Guaranteed for LC6568D Ceramic Resonator Oscillation

800 kHz (Murata) CSB800D	C1	220pF ± 10%
CSB800K	C2	220pF ± 10%
800 kHz (Kyocera)	C1.	220pF ± 10%
KBR800H	C2	220pF ± 10%
400 kHz (Murata)	C1	330pF ± 10%
CSB400P	C2	330pF ± 10%
400 kHz (Kyocera)	C1	330pF ± 10%
KBR400B	C2	330pF ± 10%

Fig. 3 Reset Circuit and Reset Time

(Note 7) When the rise time of the power supply is 0, the reset time becomes 10ms to 100ms at CRES=0.1µF. If the rise time of the power supply is long, the value of CRES must be increased so that the reset time becomes 10ms or greater.

Fig. 1 External Clock Input Waveform

Fig. 5 Serial Input/Output Timing

The load conditions are the same as in Fig. 5.

Fig. 6 Pulse Output Timing at Port E0

Fig. 7 Port B3 High Vt/Low Vt Input Circuit

Fig. 8 IDDOP Test Circuit (f=4MHz)

Fig. 9 RC Oscillation Circuit

Table 2 LC6568D

Table of Oscillation, Predivider Option (All selectable combinations are shown. Do not use any other combinations than shown below.) $V_{DD} = 4$ to 6V

Circuit Configuration	Frequency	Predivider Option (Cycle Tim e)	Remarks
Ceramic Resonator	400 kHz	1/1 (10 μs)	Unusable with 1/3, 1/4 predivider
Option	800 k Hz	1/1 (5 μs)	Unusable with 1/3, 1/4 predivider
	3 MHz	1/3 (4 μs) 1/4 (5.33 μs)	Unusable with 1/1 predivider
	4 MHz	1/3 (3 μs) 1/4 (4 μs)	Unusable with 1/1 predivider
External Clock Option or External Clock Drive by RC OSC Option	384 to 1444 kHz 1152 to 4330 kHz 1536 to 4330 kHz	1/1 (10.4 to 2.77 μs) 1/3 (10.4 to 2.77 μs) 1/4 (10.4 to 3.70 μs)	
External Clock Drive by Ceramic Resonator OSC Option		lrive is impossible. When ption or CR OSC option.	using the external clock drive, specify
RC OSC Option	If used with other th	vider, recommended cons nan recommended consta the same as for the exter	nts, the predivider option, frequency,

RC Oscillation Characteristic of the LC6568D

Fig. 10 shows the RC oscillation characteristic of the LC6568D. For the variation range of RC OSC frequency of the LC6568D, the following are guaranteed at the external constants only shown below.

External constants Cext = 220pF, Rext = 6.8kohms

554kHz \leq f_{CRS} \leq 1235kHz (T_a = -30°C to +70°C, V_{DD} = 4.0 to 6.0V)

If any other constants than specified above are used, the range of Rext = 4kohms to 20kohms, Cext = 150pF to 390pF must be observed. (See Fig. 10.)

(Note 8) The oscillation frequency at $V_{DD} = 5.0V$, $T_a = 25^{\circ}C$ must not exceed 750kHz. (Note 9) The oscillation frequency at $V_{DD} = 4$ to 6V, $T_a = -30$ to $+70^{\circ}C$ must be within the operation clock frequency range (384kHz to 1444kHz).

LC6568H

.

		-						
1.	Absolute Maximum Ratings/	T _a = 25°C, \	/ _{SS} =0V		min	typ	max	unit
	Maxumum Supply Voltage	V _{DD} max		VDD	-0.3		+7.0	v
	Output Voltage	VO(1)		OSC2	Allowable	e uo to v		V
		0(1)				-	erated	
		VO(2)		Port K, L,	VDD-45	-	D+0.3	v
		•0(2)		M, N, O, P0	•••••••••••••••••••••••••••••••••••••••	•0	D.0.0	•
	Inout Voltage	Maria				N-	- 10 2	v
	Input Voltage	VI(1)		OSC1 (Note 1	1) -0.3	۷D	D+0.3	V
				TEST, RES			. –	
		VI(2)		Port A, B	-0.3		+15	v
		VI(3)			VDD-45	VD	D+0.3	v
	Input/Output Voltage	VIO(1)		Port of OD ty	/pe -0.3		+15	V
				(Port C, D, E,				
				F ₀ to F ₂ , G,				
				H ₀ , I, J)				
		Vicio		Port of PU ty	0.2	1/-	~ 10.2	47
		V10(2)			-	۷Ľ	D+0.3	٩V
				(Port C, D, E,	,			
				Fo to F2, G,				
				H ₀ , I, J)				
	Peak Output Current	IOP(1)		Port C, D, E,	-2		+15	mΑ
				Fo to F2, G,				
				H ₀ , I, J)				
		IOP(2)		Port K, L	-10		0	mA
		IOP(3)		Port M, N, O,			Õ	mA
		01 (0)		Po			-	
	Allowable Power Dissipation	Pu max	$T_{a} = -30 \text{ to } +70^{\circ} \text{C}$	DIP64S			600	mW
	anomable i ower bissipation	1 d max						
		-		QIP 64			430	mW
	Operating Temperature	Topr			. –30		+70	°C
	Storage Temperature	T _{stg}			-55		+125	°C
	Average Output Current	IOA(1)	Per pin over the period of	Port C, D, E,	F0 —2		+15	mΑ
			100msec.	to F2, G, H0,				
				I, J)				
		IOA(2)	Per pin over the period of	Port K, L	-10		0	mA
		0, 1(2)	100msec.	•			-	
		IOA(3)	Per pin over the period of	Port M, N, O,	-30		0	mΑ
		·OA(3)	100msec.				Ŭ	
		Σto A (A)	Total current of PC0 to 3.	Po	20			4
		$\Sigma IOA(1)$			30		-+50	mΑ
			PD ₀ to 3, PE ₀ to 3					
			(Note 2)					
		$\Sigma IOA(2)$	Total current of PF0 to 2,		30		+50	mΑ
			PG0 to 3, PH0, PI0 to 3,					
			PJ0 to 3 (Note 2)					
		$\Sigma IOA(3)$	Total current of PK0 to 3,	** * ** *	-50		0	mΑ
			PLo to 3, PMo to 3					
			(Note 2)					
		$\Sigma I_{OA(4)}$	Total current of PNO to 3,		50		0	mΑ
		07(4)	PO0 to 3, PP0 (Note 2)				-	
2	Allowable Operating Condition	ons/T_ =3	0 to $\pm 70^{\circ}$ C Vec = 0V Vpp	$= 4.5 \pm 0.6 0 \text{V}$;			
	inottuble operating conditi		therwise specified	4.0 10 0.0 0	min	tun	may	unit
	Operating Supply Voltage		alei Mise sheellien	Vaa	min 4 F	typ	max	
		VDD		VDD	4.5		6.0	V.
	Standby Supply Voltage	VST	RAM, register hold(Note 3)	VDD	1.8		6.0	V
	"H"-Level Input Voltage	VIH(1)		Port A	1.9		+13.5	V
		VIH(2)	Output Nch Tr OFF	Port of OD	0.7V _{DD}		+13.5	V
		-		type				
				(Port C to J)				
		VIH(3)	Output Nch Tr OFF	Port of PU	0.7V _{DD}		VDD	v
			-	type				
				(Port C to J)				
				(Con	ntinued o	n nevt	nane
					001			Page,

.

LC6568H					min	typ max	unit
	VIH(4)	Output Nch Tr		SCK, SI of OD type	0.8V _{DD}	+13.5	V
	V1H(5)	Output Nch Tr	OFF	SCK, SI of PU type	0.8VDD	VDD	V
	VIH(6)	Fig. 7		High Vt input circuit	V _{DD} -0.5	+13.5	v
	VIH(7)	Fig. 7		of PB3 Low Vt input circuit	0.5VDD	+13.5	v
	VIH(8)	Fig. 3 Voo:	1.8 to 6.0V	of PB3 RES	0.8V _{DD}	VDD	v
	VIH(8) VIH(9)	, ig. 0 , 10D.	1,0 10 0,0 1	PB0 to 2, INT0 to 3	0.8VDD	+13.5	v
	ViH(10)	External clock	mode	OSC1	0.8V _{DD}	VDD	v
"L''-Level Input Voltage	VIL(1)			PA ₀ to 3	Vss	+0.5	
	VIL(2)			PCto PJ TEST	VSS	0.3V _{DD}	v
	VIL(3)			PB0 to 2 SCK, SI' INT0 to 3	V _{SS}	0.25VDD	v
	V1L(4)			RES	Vss	0.25VDD	v
	VIL(5)	Fig. 7		PB3	VSS	0.9	
	VIL(6)	Fig. 7 VDD: External clock	1.8 to 6.0V	PB3	VSS	0.3	V
Operating Frequency	VIL(7) fop	External clock	mode	OSC1 OSC1	V _{SS} 384	0.25V _{DD} 4330	V kHz
(Cycle Time)	(TCYC)			OSC2	(10.4)	(0.92)	
Ceramic Resonator Oscillati Constants External Clock Conditions	on			OSC1 OSC2		1, Table 1.	(μ.ο.)
Frequency "H"-Level/"L"-Level	fEXT tEXH, tEX	1/1 predivid	er	OSC1 (Fig. 4 OSC1 (Fig. 4		Table 2.	ns
Clock Pulse Width Rise/Fall Time	tEXTR, tE			OSC1 (Fig. 4	.)	30	ns
B. Electrical Characteristics/Ta			VDD = 4.5 t a	-			
uni	ess otherwis		00		min	typ max	unit
"H"-Level Input Current	^I IH(1)	Output Nch Tr	OFF.				
		(Including OFF current of Nch	leakage	Port of OD ty (Port C to J) Port A, B	уре	+5.0	μA
	l(H(2)	(Including OFF	[:] leakage Tr) OFF	(Port C to J)		+5.0	·
		(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch VIN=VDD	^r leakage Tr) OFF ^r leakage Tr}	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1 (External clo	/pe ck mode)		μA
"L"-Level Input Current	IH(2) IL(1)	(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch	^r leakage Tr) OFF ^r leakage Tr}	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1	vpe ck mode) ype —1.0		·
"L"-Level Input Current	lıL(1)	(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch VIN=VDD Output Nch Tr	leakage Tr) OFF leakage Tr) OFF	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1 (External clo Port of OD ty (Port C to J) Port A, B OSC1	vpe ck mode) ype1.0 ck mode)	+1.0	μA
"L"-Level Input Current	IIL(1) IIL(2)	(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch VIN=VDD Output Nch Tr VIN=VSS Output Nch Tr VIN=VSS	leakage Tr) OFF leakage Tr) OFF	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1 (External clo Port of OD ty (Port C to J) Port A, B OSC1 (External clo Port of PU ty (Port C to J)	/pe ck mode) ype1.0 ck mode) /pe1.3	-0.35	μA μA mA
"L"-Level Input Current "H"-Level Output Voltage	lıL(1)	(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch VIN=VDD Output Nch Tr VIN=VSS	leakage Tr) OFF leakage Tr) OFF	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1 (External clo Port of OD ty (Port C to J) Port A, B OSC1 (External clo Port of PU ty (Port C to J) RES Port of PU Ty type	/pe ck mode) ype1.0 ck mode) /pe1.3 45	+1.0	μΑ
	IIL(1) IIL(2) IIL(3)	(Including OFF current of Nch VIN=+13.5V Output Nch Tr (Including OFF current of Nch VIN=VDD Output Nch Tr VIN=VSS Output Nch Tr VIN=VSS VIN=VSS	leakage Tr) OFF leakage Tr) OFF	(Port C to J) Port A, B Port of PU ty (Port C to J) OSC1 (External clo Port of OD ty (Port C to J) Port A, B OSC1 (External clo Port of PU ty (Port C to J) RES Port of PU TY	/pe ck mode) ype1.0 /pe1.3 45 /DD1.2	-0.35	μΑ μΑ mA μΑ

Continued on next page.

LC6568H				•			
"L"-Level Output Voltage	V _{OL(1)}	IOL≂10mA, Other ports: ΣIOLmax	Port C, D, E, F0 to F2 G, H0, I, J)	min	typ	max 1.5	unit V
	VOL(2)	IOL=2mA, Each port: IOL=2mA	Port C, D, E, F0 to F2, G, H0, I, J)			0.5	v
	VOL(3)	Vp=-35V, Output Pch Tr OFF Output open	Port of PD type (Port K to P)			33	V
Output OFF Leakage Current	OFF(1)	Output Pch Tr OFF VOUT=VDD	Port of OD type (Port K to P)			+30	μA
	OFF(2)	Output Pch Tr OFF VOUT=VDD-40V	Port of OD type (Port K to P)	30			μA
Hysteresis Voltage	VHYS	· ·	RES, INTO to 3, SCK, SI, OSC1 of Schmitt type (Note 5)	0.1	IVDD		V
Pull-up Resistance	Rpp	V _{DD} : 5.0V	Port of PU type (Port C to J)		14		kΩ
Pull-down Resistance	RPD	V _{DD} : 5.0V	Port of PD type (Port K to P)	50		200	kΩ
Current Dissipation	Operation	mode, Output Nch Tr, Pch Tr					
	IDDOP(1)		V _{DD}		8	15	mA
	IDDOP(2)	External Clock mode 384kHz to 4330kHz	V _{DD}		8	15	mA
	IDDST	Standby mode Output Nch, Pch Tr OFF Output pin open VIN=VDD	V _{DD}		0.05	10	μA
Ceramic Resonator Oscillation	on						
Oscillation Frequency	fCFOSC (Note 4)	1/1 (1µs) 4MHz	OSC1 OSC2 (Fig. 1)	3.92	4.00	4.08	MHz
Oscillation Stabilizing Period	^t CFS	Fig. 2				10	ms
Pin Capacitance	CP	f=1MHz Other than pins to be tested: VIN=VSS			10		pF

4. Serial Interface Characteristics/V_{SS} = 0V, $T_a = -30^{\circ}C$ to +70°C,

	$V_{DD} = 4.$	5V to 6,0V u	nless otherwise specified	min	typ	max	unit	
Serial Clock								
Input Clock Cycle Time	^t CKCY(1)	Fig. 5	SCK	3.0			μs	
Output Clock Cycle Time	tCKCY(2)	Fig. 5	SCK		64 x Tcv	YC	μs	
Input Clock ''L''-Level Pulse Width	tCKL(1)	Fig. 5	SCK	1.0	-		μs	
Output Clock "L"-Level Pulse Width	tCKL(2)	Fig. 5	SCK		32 x TC)	YC	μs	
Input Cłock ''H''-Leveł Pulse Width	^t CKH(1)	Fig. 5	SCK	1.0			μs	
Output Clock "H''-Level Pulse Width	^t CKH(2)	Fig. 5	SCK		32 x TC	YC	μs	

Continued on next page.

LC6568H				min	typ	max	unit
Serial Input							
Data Setup Time	чск	Specified for 1 of SCK , Fig. 5	SI	0.5			μs
Data Hold Time	ţCKI	Specified for ↑ of SCK, Fig. 5	SI	0.5			μs
Serial Output		-					
Output Delay Time	tCKO	Specified for ↓ of SCK, Nch OD only: External 1kohm, external 50pF Fig. 5	SO			0.5	μs
Pulse Output							
Period	^t PCY	Fig. 6	PEO	64 x T(CYC		μs
"H"-Level Pulse Width	tрн	TCYC=4 x System clock	PEO	32 x TC		6	μs
"L"-Level Pulse Width	tΡL	period, Nch OD only: External 1kohm, external 50pF	PE0	32 x T _C v	YC±10%	ó	μs
5. Comparator Characterisites	/Vee =0V.	$T_{a} = -30^{\circ}C$ to $+70^{\circ}C$ V = 4	4.5V to 6.0V				
• • • • • • • • • • • • •		rwise specified		min	typ	max	unit
Comparator Characteristics					.)F		
Input Voltage Range	VCMIN		P13, PJ1 to 3	Vss+1.0	Vor	j−1.5	v
Response Speed	TRS	100mV overdrive mode	•	00		50	μs
Offset Voltage	VOFS	V _{CMIN} =V _{SS} +1.0V to V _{DD} 1.5V			±20	±100	mV

- (Note 1) When oscillated internally under the oscillating conditions in Fig. 1, up to the oscillation amplitude generated is allowable.
- (Note 2) Average over the period of 100msec.
- (Note 3) Operating supply voltage VDD must be held until the standby mode is entered after the execution of the HALT instruction.
- The PB3 pin must be free from chattering during the HALT instruction execution cycle.
- (Note 4) fCFOSC represents an oscillatable frequency.
- (Note 5) The OSC1 becomes the Schmitt type when the OSC option is the 2-pin RC OSC or external clock OSC.
- (Note 6) When mounting the QIP version on the board, do not dip it in solder.

Table 1 Constants Guaranteed for LC6568H Ceramic Resonator Oscillation

4 MHz (Murata)	C1	33pF ± 10%
CSA4.00MG	C2	33pF ± 10%
4 MHz (Kyocera)	C1	33pF ± 10%
KBR4.0MS	C2	33pF ± 10%
3 MHz (Murata)	C1	33pF ± 10%
CSA3.00MG	C2	33pF ± 10%
3 MHz (Kyocera)	C1	33pF ± 10%
KBR3.0MS	C2	33pF ± 10%

Fig. 3 Reset Circuit and Reset Time

(Note 7) When the rise time of the power supply is 0, the reset time becomes 10ms to 100ms at $C_{RES} = 0.1 \mu F$. If the rise time of the power supply is long, the value of C_{RES} must be increased so that the reset time becomes 10ms or greater.

Fig. 4 External Clock Input Waveform

Fig. 5 Serial Input/Output Timing

The load conditions are the same as in Fig. 5.

Fig. 7 Port B3 High Vt/Low Vt Input Circuit

Fig. 8 IDDOP Test Circuit (f=4MHz)

Table 2 LC6568H

Table of Oscillation, Predivider Option (All selectable combinations are shown. Do not use any other combinations than shown below.) $V_{DD} \approx 4.5$ to 6V

Circuit Configuration	Frequency	Predivider Option (Cycle Time)	Remarks
Ceramic Resonator OSC Option	4 MHz	1/1 (1 µs)	
External Clock Option	384 to 4330 kHz	1/1 (10.4 to 0.92 μs)	······································
External Clock Drive by Ceramic Resonator OSC Option	The external clock optic		he external clock drive, specify the

Notes for Program Evaluation

• When evaluating the LC6568D/H with the evaluation chip (LC6595, LC65PG68), the following must be observed.

si- tion	14		Function			
Classi- fication	ltem	Mass-production chip	Evaluation chip			
	OSC divider	3 selections (1/1, 1/3, 1/4) by option (Note) For H version, 1/1 divider only is available.	3 selections (1/1, 1/3, 1/4) available by 2 pins of DIV pin, 3OR4 pin. DIV pin, 3OR4 pin must be set according to option specified for mass-production chip.			
	Ports C, D output level at reset mode	Ports C, D can be brought to "H" or "L" in a group of 4 bits.	Port C and Port D can be brought to "H" and "L" by CHL pin and DHL pin respectively. CHL pin and DHL pin must be set according to option specified for mass-production chip.			
	Port output configura- tion PU/OD	PU or OD can be selected bitwise.	Only Nch OD without PU. [Evaluation chip-applied evaluation] External resistor (10kohms) on evaluation board must be connected to necessary port. [Simulation chip-applied evaluation] Resistor must be connected to necessary port on application board.			
Notes for option	PU resistor configura- tion	PU resistor brought to Hi-Z at "L" output mode (Pch Tr is turned OFF).	PU resistor, being external resistor, whose impedance remains unchanged at "L" output mode. For mass-production chip, leakage current only flows in Pch Tr at "L" output mode; for evaluation chip, current continues flowing in PU resistor at "L" output mode.			
	Port output configura- tion PD/OD	PD or OD can be selected bitwise.	Only Pch OD without PD. [Evaluation chip-applied evaluation] External resistor (100kohms) on evaluation board must be connected to necessary port. [Simulation chip-applied evaluation] Resistor must be connected to necessary port on application board. In this case, load power source must be also supplied on application board.			
	Port function, port input/ output or compara- tor input	If the input instruction (IP, BP) is executed with port input/output or comparator input function not option-selected, "O" is input from the port bits not specified as port input/output or comparator input.	The input pins with options not selected are in floating state. That is, the data input from such pins are indeterminate. If the input instruction (IP, BP, BNP) for these input pins, unpredictable data is input from them. Do not use any input instruction for such input pins.			
or OSC	OSC [2-pin RC OSC] constants Catalog-guaranteed constants -1 in catalog.		[2-pin RC OSC] Different from mass-production chip in circuit design and characteristic. Frequency must be adjusted to OSC frequency of mass-production chip by adjusting variable resistor.			
Notes for OSC		[2-pin ceramic resonator OSC] Catalog-guaranteed constants provide OSC at frequency specified in catalog.	[2-pin ceramic resonator OSC] Different from mass-production chip in circuit design and characteristic. Wiring capacitance may provide unstable OSC. External constants must be fine-adjusted according to service conditions.			

Continued on next page.

Classi- fication	ltem	Function								
Clas fica	Rem	Mass-production chip	Evaluation chip							
Notes for OSC	OSC constants -2	[2-pin ceramic resonator OSC] Feedback resistor is contained.	[2-pin ceramic resonator OSC] No feedback resistor is contained. Feedback resistor of 1 Mohm must be connected externally.							
	OSC frequency	OSC frequency characteristic as indicated in catalog.	Different from mass-production chip in circuit design, and characteristic. ES, CS must be used to evaluate characteristic in detail.							
Notes for electrical characteristics	Operating current, standby current	Current characteristic as indicated in catalog.	Different from mass-production chip in cirucit design, characteristic. The standby current cannot be evaluated in detail. However, the standby current can be confirmed roughly in the manner discussed later. Be sure to confirm the standby current. ES, CS must be used to evaluate characteristic in detail.							
Not cha	Operating voltage	Supply voltage range as indicated in catalog.	Evaluation chip must be also used at V_{DD} =5V±5% at which EPROM, other LSI are used. Therefore, V_{DD} =5V±5% only can be used for evaluation of mass-production microcomputers.							
	Operating temper- ature	Temperature range as indicated in catalog.	Evaluation chip and simulation chip must be used at 10°C to 40°C for evaluation.							
ort circuit	Port A	Input-only port	Port A is an input/output common port. Do not use the output instructions (OP, SPB, RPB). When performing evaluation, do not fail to turn OFF the pull-up resistance option switch for port A on the evaluation chip board.							
Notes for I/O port circuit configuration	Port F3	The PF3 is not available. Even when the output instruction (OP, SPB, RPB) is executed, no operation is performed.	The PF3 exists. However, do not use the output instruction (OP, SPB, RPB) for this pin. When the output instruction is executed and "O" is output to the pin, the interrupt circuit is affected.							
Not CON		When the IP instruction is execut- ed "O" is always input to AC from pin PF3.	When the IP instruction is executed, "1" is always input to AC from pin PF3. However, "0" is input if "0" has been output to pin PF3 by the OP instruction.							

The EVA800-TB6568 board and LC65PG68 incorporates an LC6568 evaluation IC and a gate array. Actual performance may differ from evaluation performance because of the gate array which is used to emulate interrupts and control bidirectional port, PH_{0} .

1. Operation

The gate array can go out of sync with the LC6586D/H due to slight variations in the reset rise time. If this occurs, the LC6568 evaluation IC will not accept interrupts or PH₀ port instructions for several ms after program startup. When running programs, always ensure that interrupts or PH₀ port instructions are processed correctly.

2. Characteristics

When output driver options have been selected, ports PB_{0b3} and PH_0 have a breakdown voltage of 15V in the case of volume fabrication devices. In the LC6568 evaluation IC, however, these ports have a withstanding voltage equal to V_{DD} . Take care that test circuit designs do not exceed this limit.

<Confirmation methods for the standby function>

The standby current at the standby mode of the simulation chip can be evaluated not exactly but approximately. Then, do the following steps.

- (a) Confirmation of the standby state
 - Be sure to confirm whether or not the LSI enters the standby mode when the standby conditions are satisfied.
 - (i) When the OSC1 and OSC2 oscillation option is selected, confirm on an oscilloscope that the oscillation stops in the standby mode.
 - (ii) Confirmation by the current dissipation Remove the EPROM when confirming whether or not the LSI enters the standby mode. The IDD of the LSI can determine whether or not the LSI is now in the standby mode.
 When the LSI is in the operating mode, more than some 100µA current is transmitted. When in the standby mode, the current of the IDD is 150µA or less if the DIV, 30R4, CHL, DHL are all set to "H" (excluding the load current). If the DIV, 30R4, CHL, DHL, ----, etc. are all set to "L", the current of the IDD is approximately 20µA.

(b) Confirmation by the load current

Your program must be designed so that the current is not transmitted to the input/output ports prior to the execution of the HALT instruction. This can reduce the useless dissipation of the load current at the standby mode and be confirmed on an oscilloscope.

- (i) Design your program so that the current is not transmitted to the output ports prior to the execution of the HALT instruction.
- (ii) Design your program and peripherals so that the input ports and input/output ports are not brought to the floating state at the standby mode.

If brought to the floating state, current flows in the microcomputer input circuit section, causing more current dissipation. Therefore, the backup enable time is shortened extremely in applications where the capacitor backup is used. (For the evaluation chip, there is appreciable current because the option circuit section to select the port input/output or comparator input is partly in the floating state.)

Ceramic resonator oscillation constants when the EVA800-TB6568 is used

When developing your program using the eva-chip board EVA800-TB6568, adjust the capacitor value according to the stray capacitance of the circuit because the ceramic resonator oscillation constants depend on the conditions for evaluation and the cable length, etc.

- Note) When the evaluation chip is used in the 2-pin ceramic resonator oscillation mode, no feedback resistor is contained unlike the mass-production chip.
 - Connect a feedback resistor of 1Mohm externally as shown below.

Since constants R, C are also differ from those for the mass-production chip, adjust the capacitor value according to the stray capacitance of the circuit.

2-pin Ceramic Resonator Oscillation Circuit for Evaluation Chip and Mass-production Chip

LC6568 INSTRUCTION SET

Symbol	Description				
AC	: Accumulator	M(DP)	: Memory addressed by DP	().]] : Contents
ACt	: Accumulator bit t	P(DP ₁)	: Input/output port addressed by DP	- ·	: Transfer and direction
CF	: Carry flag	PC	: Program counter	+	: Addition
CTL	: Control register	STACK	: Stack register	_	: Subtraction
DP	: Data pointer	TM	: Timer	٨	: AND
E	: E register	TMF	: Timer (internal) interrupt request flag	v	:OR
EXTF	: External interrupt request flag		Working register	¥	: Exclusive OR
Fn	:Flag bit n	ZF	: Zero flag		
M	: Memory	P(DPL)	: Pseudo input/output port specified by DPL		

Instruction			Instruction code			8			Status flag	
Instruc			D7D6D5D4	D3D2D1D0	Bytes	Cycles	Function	Description	affected	Remarks
ŝ	CLA	Clear AC	1100	0000	1	1	AC + O	The AC contents are cleared.	ZF	*1
Ĩ	CLC	Clear CF	1110	0001	۱	1	CF ⊷0	The CF contents are cleared.	CF	1
inst	STC	Set CF	1 1 3 1	0001	ł.	1	CF ← 1	The CF is set.	CF	
fġ	СМА	Complement AC	1110	1011	1	1		The AC contents are complemented,	ZF	1 •
- Ind	INC	Increment AC	0000	1 1 1 0	1	1	AC ←(AC) +1	The AC contents are incremented +1.	ZF CF	
i Ser	DEC	Decrement AC	0000	1 1 1 1	1	1	AC ←(AC) -1	The AC contents are decremented -1.	ZF CF	
Accumulator manipulation instructions	RAL	Rotate AC left through CF	0000	0001	1	ı.	$ACo \leftarrow (CF), ACn + 1 \leftarrow (ACn), CF \leftarrow (AC3)$	The AC contents are shifted left through the CF.	ZF CF	
Ē	TAE	Transfer AC to E	0 0 0 0	0011	1	1	E + (AC)	The AC contents are transferred to the E.		
Acc	XAE	Exchange AC with E	0 0 0 0	1 1 0 1	1	1	(AC) ≒(E)	The AC contents and the E conents are		
5	INM	Increment M	0010	1 1 1 0	1	1	M(DP) - (M(DP))+1	exchanged. The M(DP) contents are incremented +1.	75 05	
jat i	DEM	Decrement M	0010	1 1 1 1	1	1	$M(DP) \leftarrow (M(DP)) + 1$		ZF CF	
Memory manipulation instructions	SMB bit	Set M data bit	0000	1 O B 1 B 0	_		M(DP, 8180) ←1	The M(DP) contents are decremented -1, A single bit of the M(DP) specified with	ZF CF	
L S S			0000	1 0 8 8 8			M(DF. 6160) -1	B ₁ B ₀ is set.		
Memo	RMB bit	Reset Midala bit	0010	1 0 B1B0	-	1	M(DP, 8180) ←0	A single bit of the M(DP) specified with B ₁ B ₀ is reset.	ZF	
	AD	Add M to AC	0110	0 0 0 0	1	1	AC ←(AC) + (M(DP))	Binary addition of the AC contents and the M(DP) contents is performed and the result is stored in the AC.	ZF CF	
	ADC	Add M to AC with CF	0010.	0 0 0 0	1	1	AC ←(AC) + (M(DP)) +(CF)	Binary addition of the AC, CF contents and the M(DP) contents is performed and the result is stored in the AC.	ZF CF	
	DAA	Decimal adjust AC in addition	1110	0110	1	1	AC +(AC) + 6	6 is added to the AC contents.	ZF	
	DAS	Decimal adjust AC in subtraction	1 1 1 0	1010	1	1	AC ←(AC)+10	10 is added to the AC contents.	ZF	
tions	EXL	Exclusive or M to AC	1111	0101	1	1	AC ←(AC) ¥ (M(DP))	The AC contents and the M(DP) contents are exclusive-ORed and the result is stored in the AC.	ZF	
înstruc	AND	And M to AC	1 1 1 0	0111	1	1	AC (AC) A (M(DP))	The AC contents and the M(DP) contents are ANDed and the result is stored in the AC.	ZF	
parison	OR	Qr M to AC	1110	0101	1	1	AC ←(AC) V (M(DP))	The AC contents and the M(DP) contents are ORed and the result is stored in the AC.	ZF	
Arithmetic operation/compariaon instructions	СМ	Compare AC with M.	1111	1011	1	1	(M(DP))+(AC)+1	$\label{eq:contents} \begin{array}{c} \mbox{The AC contents and the M(DP) contents} \\ \mbox{are compared and the CF and ZF are set/reset.} \\ \hline \\ $	ZF CF	
Arith	CI data	Compare AC with immediate data		13121110			13121,10 +(AC)+1	The AC contents and the immediate data $1_31_21_{10}$ are compared and the ZF and CF are set/reset. Comparison result CF ZF $1_31_21_1_0 > (AC) 0 0$ $1_31_21_1_0 = (AC) 1 1$ $1_31_21_1_0 < (AC) 1 0$	ZF CF	
	CLI data	immediate data	0010 0101	1 1 0 0 3 2 1 0	2	2	(DP _L) ¥13121110	The DP _L contents and the immediate data 1 ₃ 1 ₂ 1 ₁ 1 ₀ are compared.	ZF	
	LI data	Load AC with immediate data		13 12 11 10	;	۱	AC -13121110	The immediate data 13121110 is loaded in the AC.	ZF	* 1
	S	Store AC to M			1	1	M(DP) + (AC)	The AC contents are stored in the M(DP).		
	L	Load AC from M			- +	1	AC ← (M(DP))	The M(DP) contents are loaded in the AC.	ZF	
ctions	XM data	Exchange AC with M. then modify DPH with immediate data	1010	0 M ₂ M ₁ M ₀	1	2	(AC) ≒ (M(DP)) DP _H ← (DP _H) ¥ OM ₂ M ₁ M ₀	The AC contents and the M{DP} contents are exchanged and then the DP _H contents are modified with the contents of $(DP_H) \forall OM_2M_1M_0$.	ZF	The ZF is set/reset according to the result of (DP _H) wOM, Is, M.
Load/store instructions	X .		1010	0000	1	2	(AC) ≒ [M(DP)]	The AC contents and the M(DP) contents are exchanged.	ZF	+ OM ₂ M ₁ M ₀ . The ZF is set/reset according to the DP _H contents at the time of instruc-
Load/	XI	Exchange AC with M. then increment DPL	1111	1 1 1 0	1	2	$(AC) \leftrightarrows (M(DP)) DP_{L} \leftarrow (DP_{L}) + 1$	The AC contents and the $M(DP)$ contents are exchanged and then the DP_{L} contents are incremented +1.	ZF	The ZF is set/reset according to the result of (DPL +1).
	XD	Exchange AC with M, then decrement DPL	1 1 1 1	1 1 1 1	1	2	$(AC) \cong (M(DP))$ $DP_L \leftarrow (DP_L) = 1$	The AC contents and the M(DP) contents are exchanged and then the DPL contents are decremented - 1.	ZF	The 2F is set/reset according to the result of (DP1),
	RTBL	Read table data from program ROM	0 1 1 0	0011	1	2	AC.E←ROM (PCh.E.AC)	The contents of ROM addressed by the PC whose low-order 8 bits are replaced with the E and AC contents are loaded in the AC and E.		

8		<u> </u>	Instruct	tion code			[0	
Instruction		Mnemonic	D7 D6 D5 D4		Bytes	Cycle	Function	Description	Status flag affected	Remarks
manipulation instructions	LDZ dala	Load DPH with Zero and DPL with immediate data respectively	1000	13 12 11 10	1	1	DPH ←0 DPL ←13121110	The DP _H and DP _L are loaded with 0 and the immediate data 1 ₃ 1 ₂ 1 ₁ 1 ₀ respectively.		
ation in	LHI data	Load DPH with immediate data	0100	13 12 11 10	1	1	DP∺ ← 13121110	The DP _H is loaded with the immediate data $1_3l_2l_1l_0$.		
, a	IND	Increment DPL	1110	1110	1	1	$DP_L \leftarrow (DP_L) + 1$	The DPL contents are incremented +1.	ZF	
Ē	DED	Decrement DPL	1 1 1 0	1 1 1 1	1	۱	DPL +- (DPL) 1	The DP _L contents are decremented -1 .	ZF	
pointer	TAL	Transfer AC to DPL	1 1 1 1	0111	1	1	DPL←(AC)	The AC contents are transferred to the DPL		
Ē	TLA	Transfer DPL to AC	1110	1001	1	1	AC +- (DPL)	The DPL contents are transferred to the AC	ZF	
Data	ХАН	Exchange AC with DPH	0010	0011	1	1	(AC) 😂 (DPн)	The AC contents and the DP _H contents are exchanged.		
Working register manipulation instructions	XAt XAO XAT XAZ XA3	Exchange AC with working register At			1 1 1	1 1 1	(AC) ≒(AO) (AC) ≒(A1) (AC) ≒(A2) (AC) ≒(A3)	The AC contents and the contents of working register At are exchanged. At is assigned one of A_0 , A_1 , A_2 , A_3 according to $t_1 t_0$.		· · · · · · · · · · · · · · · · · · ·
ing registe ctions	XHa XHO XH1	Exchange DPH with working register Ha	1111	a 1 0 0 0 1 1 0 0	1 1	1	(DPн) 年(HO) (DPн) 年(H1)	The DP _H contents and the contents of working register Ha are exchanged. Ha is assigned either of H0 or H1 according to a.		
	XLa XLO XL1	Exchange DPL with working register La		0 1 0 0	1	1	(DPL)≒(LO) (DPL)≒(L1)	The DPL contents and the contents of working register La are exchanged. La is assigned either of LO or L1 according to a. The flag excelling with ReR.R. B. is set		
<u>s</u>	SFB (lag	Set flag bit	0101	B3 B2 B1 B0	1	1	Fo + 1	The flag specified with $B_3B_2B_1B_0$ is set.		
Flag manipulation instructions	RFB flag	Reset flag bit	0001	B3 B2 B1 B₀	1	1	Fn ⊷0	The flag specified with $B_3 B_2 B_1 B_0$ is reset.	ZF	The flags are divid- ed into 4 groups of F_0 to F_3 , F_4 to F_7 , F_8 to F_{11} , F_{12} to F_{15} . The ZF is set/reast according to the 4 bits including a uingle bit specified with the immediate data $B_3B_2B_1B_0$.
	JMP addr	Jump in the current bank	0 1 1 0 P7P6P5P4	1 РюР9Ре РзР2РіРо	2	2	PC ← PC11 (or PC11). P10P9 P8 P7 P6 P5 P4 P3 P2 P1 P0	A jump to the address specified with the PC ₁₂ PC ₁₁ (or PC ₁₁) and immediate data $P_{10}P_9P_8P_7P_6P_5$ $P_4P_3P_2P_1P_0$ occurs.		if the BANK and SB instructions are executed consecuti- vely, the bank is changed.
tions	JPEA	Jump in the current page modified by E and AC	1111	1010	1	1	PC7~0 ←(E.AC)	A jump to the address specified with the contents of the PC whose low-order 8 bits are replaced by the E and AC contents occurs.		
tine instruc	CZP addr	Call subroutine in the zero page	1011	P3 P2 P1 P0	1	1	STACK \leftarrow (PC)+1 PCII~6.PC1~0 \leftarrow 0 PC5~2 \leftarrow P3P2P1P0	A subroutine in page 0 of bank 0 is called.		
ump/submutine instructions	CAL addr	Call subroutine in the zero bank	1 0 1 0 P7P6P5P4	1 P10P9P8 P3P2P1P0	2	2	STACK \leftarrow (PC) +2 PC1f~0 \leftarrow OP10P9P8P7 P6P5P4P3P2P1P0	A subroutine in bank 0 is called.		
ž	RT	Return from subroutine	0110	0010	1	,	PC + (STACK)	A return from a subroutine occurs,		
	RTI	Return from interrupt routine	0010	0010	1	1	$PC \leftarrow (STACK)$ CF ZF $\leftarrow CSF.ZSF$	A return from an interrupt service routine occurs.	ZF CF	
	BANK	Change bank	1 1 1 1	1101	1	1	PC II ← (PCII)	The bank is changed. (Effective only when immediately followed by the JMP instruction) The pseudo I/O port is specified. (Effective when immediately followed by the IP, OP, SPB, RPB, BP, BNP instruction)		
	SB	Set bank	0110	0 1 11 10				The bank is changed. Effective only when used immediately before the JMP instruction.		
	BA1 addr	Branch on AC bit	0 1 1 1 P7P6P5P4	0 0 tito P3P2PiPo		2	$PC7 \sim 0 \leftarrow P7 P6P5 P4$ $P3 P2P1 P0$ $if AC1 = 1$	If a single bit of the AC specified with the immediate date $t_1 t_0$ is 1, a branch to the address specified with the immediate date $P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is 8A0 to 9A3 according to the value of L
tions	BNAt addr	Branch on no AC bit		0 0 tito P3P2P1P0	2	2	$PC7 \sim_0 \leftarrow P7 P6P5P4$ $P3P2P1P0$ $if ACt = 0$	If a single bit of the AC specified with the immediate data $t_1 t_0$ is 0, a branch to the address specified with the immediate data $P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Meamonic is BNA0 to BNA3 seconding to the value of 1.
Branch instructions	BMI addr	Branch on M bit	0 1 1 1 P7P6P5P4	0 1 tito P3P2P1P0	2	2	$PC7 \sim 0 \leftarrow P7P6P5P4$ P3P2P1P0 if (M(DP.t1t0)) = 1	If a single bit of the M(DP) specified with the immediate data $t_1 t_0$ is 1, a branch to . the address specified with the immediate data $P_7 P_6 P_6 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is BMD to BMD according to the value of t.
۵.	BNMt addr	Branch on no M bit		0 1 tito P3 P2 P1 P0		2	$\frac{PC7 \sim_{0} \leftarrow P7 P6 P5 P4}{P3 P2 P1 P0}$ 11 (M(DP.t 1t 0 ¹)=0	If a single bit of the M(DP) specified with the immediate data t_1t_0 is 0, a branch to the address specified with the immediate data $P_7 P_6 P_6 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is BNMO to BNM3 according to the value of t.
	BPt addr	Branch on Port bit	O 1 1 1 P7 P6 P5 P4	1 Otito P3P2P1P0	2	2	$PC_7 \sim_0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if $(P(DP_L, t_1 t_0)) = 1$	If a single bit of port P(DP _L) specified with the immediate data $t_1 t_0$ is 1, a branch to the address specified with the immediate data $P_7 P_6 P_6 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.	-	Mnemonic is BPO to BP3 according to th value of t.

Lop Lop	Mamazia		Instruct	Instruction code]			
Instruction		Mnemonic	D7 D6 D5 D4	D3 D2 D1 D0	Byie	Cycles	Function	Description	Status flag affected	Remarks
	BNPt addr	Branch on no Port bit	0 0 1 1 P7 P6 P5 P4	1 0 t 1 t o P3 P2 P1 Po	2	2	$ \begin{array}{c} PC_7 \sim_0 &\leftarrow P_7 P_6 P_5 P_4 \\ P_3 P_2 P_1 P_0 \\ if (P(DP_L, t_1 t_0)) = 0 \end{array} $	If a single bit of port P(DP _L) specified with the immediate data $t_1 t_0$ is 0, a branch to the address specified with the immediate data $P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		Mnemonic is BNPO 1 BNP3 according to the value of 1.
	BTM addr	Branch on timer	0 1 1 1 P7P6P5P4	1 1 0 0 P3P2P1P0	2	2	$PC_{7} \sim_{0} \leftarrow P_{7}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ if TMF=1 then TMF $\leftarrow 0$	If the TMF is 1, a branch to the address specified with the immediate data $P_7P_6^P_5P_4P_3P_2P_1P_0$ within the same page occurs. The TMF is reset.		
	BNTM addr	Branch on no timer	0 0 1 1 P1P6P5P4	1 1 0 0 P3P2P1P0	2	2	PC2~0 ← P3 P6 P5 P4 P3 P2 P1 P0 11 TMF = 0 then TMF ← 0	If the TMF is 0, a branch to the address specified with the immediate $data P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs. The TMF is reset.	т <u>м</u> ғ	
	Bi addr	Branch on interrupt	0 1 1 1 P7P6P5P4		2	2	$PC7 \sim 0 \leftarrow P7P6P5P4$ $P3P2P1P0$ if EXTF = 1 then EXTF $\leftarrow 0$	If the EXTF is 1, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs. The EXTF is reset.	EXTF	
Branch instructions	BNI addr	Branch on no interrupt	0 0 1 1 P7P6P5P4	1 1 0 1 P3 P2 P1 P0	2	2	$PC : -0 \leftarrow P7 P6 P6 P4$ $P3 P2 P1 P0$ $If EXTF = 0$ $then EXTF \leftarrow 0$	If the EXTF is D, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs. The EXTF is reset.	EXTF	
Branci	BC addr	Branch on CF	'0 1 1 1 P7P6P5P4		2	2	$PC_7 \sim_0 \leftarrow P_2 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if CF = 1	If the CF is 1, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.	<u> </u>	
	BNC addr	Branch on no CF	0 0 1 1 P7P6P5P4	1 1 1 1 P3P2P1P0	2	2	$\begin{array}{c} PC := 0 \leftarrow P : P6 P5 P4 \\ P3 P2 P : P0 \\ +t \ CF = 0 \end{array}$	If the CF is 0, a branch to the address specified with the immediate data $P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ within the same page occurs.		
	BZ addr	Branch on ZF	0 1 1 1 P7P6P5P4	1 1 1 0 P3P2P+P0	2	2	$\begin{array}{c} PC_{7}\sim_{0}\sim_{P7}P_{6}P_{5}P_{4}\\ P_{3}P_{2}P_{1}P_{0}\\ \text{if } ZF=1 \end{array}$	If the ZF is 1, a branch to the address specified with the immediate data P7P6P5P4P3P2P1P0 within the same page occurs.		<u> </u>
	BNZ addr	Branch on no ZF	0 0 1 1 P7P6P5P4		2	2	$PC_{7\sim0} \leftarrow P_{1}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ $if ZF = 0$	If the ZF is 0 is branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.		— <u></u>
	BFn addr	Branch on flag bit	1 1 0 1 P2P6P5P4	n 3 n 2 n 1 n 0 P 3 P 2 P 1 P 0	2	2	$PC_7 \sim 0 \leftarrow P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ $i(F_0 = 1)$	If the flag bit of the 16 flags specified with the immediate data $n_3n_2n_1n_0$ is 1, a branch to the address specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.		Mnemonic is 8F0 to 8F15 seconding to the value of n.
	BNFn addr	Branch on no flag bit	1001 P7P6P5P4	n 3 n 2 n 1 n 0 P 3 P 2 P 1 P 0	2	2	$PC_{7 \rightarrow 0} \leftarrow P_{7}P_{6}P_{5}P_{4}$ $P_{3}P_{2}P_{1}P_{0}$ of Fn = 0	If the flag bit of the 16 flags specified with the immediate data $n_3n_3n_1n_0$ is 0, a branch to the address apacified with the immediate data $P_3P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.		Mnemonic is BNF0 to BNF15 according to the value of n.
ŝ	P	Input port to AC	0000	1 1 0 0	1	1	AC (P(DPL))	Port P(DPL) contents are loaded in the AC.	ZF	
5	OP				-	1	$P(DP_L) \leftarrow (AC)$	The AC contents are outputted to port P(DP	υ	
/Output instructions				0 1 8 80		2	P(DP ₁ B1B0) ← 1	A single bit in port $P(DP_1)$ specified with the immediate data B_1B_0 is set.		When this instruction is executed, the E contents are destroyed.
1nput/0	RPB bit	Reset port bit	0010	0 1 B1B0	1	2	P(DPL, B1B0) ← 0	A single bit in port $P(DP_L)$ specified with the immediate data B_1B_0 is reset.		When this instruction a executed, the E contents are destroyed
	SCTL bu	Set control register bit(S)	0010 1000	1 1 0 0 B3 B2 B+ B0	2	2	CTL ←(CTL) V B3B2B:B0	The bits of the control register specified with the immediate data $B_3B_2B_1B_0$ are set.		
Other instructions	RCTL bit			1 1 0 0 B3 82 81 80	2	2	CTL (CTL) A B3B2B:B0	reset,	ZF	
har inst	WITM	Write Limer	1 1 1 1	1001	1	1	TM←(E).(AC) TMF ←0	The E and AC contents are loaded in the timer. The TMF is reset.	TMF	_
8	HALT	Halt	1 1 1 1	0 1 1 7	'	1	Həli	All operations stop.		
ľ	NOP	No operation	0 0 0 0	0000	י	1		No operation is performed, but 1 machine cycle is consumed.		

*1 If the CLA instruction is used consecutively in such a menner as CLA, CLA, -----, the first CLA instruction only is effective and the following CLA instructions are changed to the NOP instructions. This is also true of the LI instruction.

·