CMOS LSI

Overview

The LC75823E and LC75823W are general-purpose LCD display drivers that can be used for frequency display in microprocessor-controlled radio receives and in other display applications. In addition to being able to directly drive up to 156 LCD segments.

Features

- Supports both 1/3 duty 1/2 bias and 1/3 duty 1/3 bias LCD drive of up to 156 segments under serial data control.
- Serial data input supports CCB* format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function
- High generality since display data is displayed directly without decoder intervention.
- The INH pin can force the display to the off state.
- The LCD drive bias voltage can be provided internally or externally.
- Power supply voltage: 4.5 to 6 V
- The LC75823E/W is a low-voltage version of LC75850E/W. (Pin compatible)
 - · CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0$ V

Parameter Symbol Conditions Ratings Unit Maximum supply voltage V_{DD} V_{DD} max -0.3 to +6.5 v V_{IN} 1 CE, CL, DI, INH v -0.3 to +6.5 Input voltage V_{IN} 2 OSC -0.3 to V_{DD} + 0.3 ۷ Output voltage V_{OUT} OSC –0.3 to V_{DD} + 0.3 v S1 to S52 IOUT 1 300 μA Output current COM1 to COM3 I_{OUT} 2 З mΑ Allowable power dissipation Pd max Ta = 85°C 200 m₩ Operating temperature Topr -40 to +85 °C Storage temperature Tstg -55 to +125 °C

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Package Dimensions

unit: mm

3159-QFP64E

3190-SQFP64

D		0		Ratings		
Parameter	Symbol	Conditions	min	typ	max	- Unit
Supply voltage	VDD	V _{DD}	4.5		6.0	V
Innutvaltana	V _{DD} 1	V _{DD} 1		2/3 V _{DD}	6.0	V
Input voltage	V _{DD} 2	V _{DD} 2		1/3 V _{DD}	6.0	V
Input high level voltage	ViH	CE, CL, DI, INH	4.0		6.0	V.
Input low level voltage	VIL	CE, CL, DI, INH	0		0.7	V
Recommended external resistance	Rosc	OSC		47		kΩ
Recommended external capacitance	Cosc	OSC		1000		pF
Guaranteed oscillator range	fosc	OSC	19	38	76	kHz
Data setup time	tds	CL, DI: Figure 2	100			ns
Data hold time	t _{ơh}	CL, DI: Figure 2	100			រាន
CE wait time	t _{ap}	CE, CL: Figure 2	100			ns
CE setup time	t _{cs}	CE, CL: Figure 2	100			ns
CE hold time	^L ch	CE, CL: Figure 2	100			ns
High-level clock pulse width	ц	CL: Figure 2	100	1		ns
Low-level clock pulse width	teL.	CL: Figure 2	100			ns
Rise time	L, L,	CE, CL, DI: Figure 2		100		ns
Fall time	4	CE, CL, DI: Figure 2		100		ns
INH switching time	t2	INH, CE:Figure 3	10			μs

Allowable Operating Ranges at Ta = -40 to +85°C, V_{SS} = 0 V

Electrical Characteristics for the Allowable Operating Ranges

n		0		Ratings		1
Parameter	Symbol	Conditions	min	typ	max	Unit
Input high level current	I _{IH}	CE, CL, DI, INH ; V _I = 6 V			5	μА
Input low level current	j	CE, CL, DI, ÎNH; V _I = 0 V	-5			μA
Oscillator frequency	fosc	OSC; $R_{OSC} = 47 \text{ k}\Omega \text{ C}_{OSC} = 1000 \text{ pF}$		38		kHz
Hysteresis width	V _H	CE, CL, DI, INH; V _{DD} = 5 V	0.3			V
Output high level voltage	V _{OH} 1	S1 to S52; I _O = -20 μA	V _{DD} 1.0			V
Output low level voltage	V _{OL} 1	S1 to S52; I _O = 20 μA			1.0	V
Output high level voltage	V _{OH} 2	COM1 to COM3; I _O = -100 μA	V _{DD} - 1.0			V
Output low level voltage	V _{OL} 2	COM1 to COM3; I _O = 100 µA			1.0	V
	V _{MID} 1	1/2 bias, COM1 to COM3; I _O = ±100 μA	1/2 V _{DD} ± 1.0			v
	V _{MID} 2	1/3 bias, COM1 to COM3; I _O = ±100 μA	2/3 V _{DD} ± 1.0			v
Intermediate level voltage*	V _{MID} 3	1/3 bias, COM1 to COM3; I _O = ±100 μA	1/3 V _{DD} ± 1.0			v
	V _{MID} 4	1/3 bias, S1 to S52; Ι _Ο = ±20 μΑ	2/3 V _{DD} ± 1.0			v
	V _{MID} 5	1/3 bias, S1 to S52; $I_O = \pm 20 \mu A$	1/3 V _{DD} ± 1.0			v
	IDD 1	Power saving mode			5	μA
	1 _{DD} 2	f = 38 kHz, 1/2 bias, V _{DD} = 5 V		400	800	μΑ
Supply current	1 _{DD} 3	f = 38 kHz, 1/3 bias, V _{DD} = 5 V		300	600	μA
	I _{DD} 2	f = 38 kHz, 1/2 bias, V _{DD} = 6 V		650	1300	μΑ
	IDD 3	f = 38 kHz, 1/3 bias, V _{DD} = 6 V		580	1200	μA

Note: * Except the bias voltage generation divider resistors that are built into V_{DD}1 and V_{DD}2. (See figure 1.)

1. When CL is stopped at the low level

2. When CL is stopped at the high level

Pin Assignment

Block Diagram

Pin Functions

Pin	Pin No.	Function		Active	10	Handling when unused
S1 to S52	1 to 52	Segment outputs for displaying the display data transferred by serial data input.		-	ο	Open
COM1 COM2 COM3	53 54 55	Common driver outputs. The frame frequency f_O is given by: $f_O = (f_{OSC}/384)$ Hz.			o	Open
osc	61	Oscillator connection An oscillator circult is formed by connecting an external resistor and capacitor to this pin.			vo	V _{DD}
CE	62		CE: chip enable	н		GND
CL	63	Serial data transfer inputs. These pins are connected to the control microprocessor.	CL: synchronization clock	_f	- I	
DI	64	connected to the consol microprocessor.	DI: transfer data]	
ĪNĦ	57	Display off control input $-INH = Iow (V_{SS})Display forced off (S1 to S52, COM1 to COM3 = Iow)$ $-INH = high (V_{DD})Display on$ Note that serial data transfers can be performed when the display is forced off.		L	I	GND
V _{DD} 1	58	Used for the 2/3 bias voltage when bias voltages are provided externally. Connect to V_{DD} 2 when 1/2 bias is used.		-	1	Open
V _{DD} 2	59	Used for the 1/3 bias voltage when bias voltages are provided externally. Connect to V _{DD} 1 when 1/2 bias is used.			I	Open
V _{DD}	56	Power supply. Provide a voltage of between 4.5 and 6.0 V.		_	—	
V _{SS}	60	Ground, Connect this pin to the system grou	nd.	-	-	

Serial Data Transfer Format

Serial Data Transfer Examples

• When 63 segments are used 63 bits of display data (D94 to D156) must be sent.

Control Data Functions

1. DR: 1/2-bias drive or 1/3-bias drive switching control data This control data bit selects either 1/2-bias drive or 1/3-bias drive.

DR	Drive type	
0	1/2-bias drive	
1	1/3-bias drive	

2. SC: Segments on/off control data This control data bit controls the on/off state of the segments.

SC	Display state	
0	On	
1	Off	

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

3. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power-saving mode. In this mode the OSC pin oscillator Is stopped and the common and segment pins output V _{SS} levels.

Segment output pin	СОМЗ	COM2	COM1
S1	D1	D2	D3
S2	D4	D5	D6
S3	D7	D8	D9
S4	D10	D11	D12
S5	D13	D14	D15
S6	D16	D17	D18
\$7	D19	D20	D21
S8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
\$12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
S19	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
\$22	D64	D65	D66
S23	D67	D68	D69
\$24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78

Display Data to	Segment	Output P	in Correspondence
------------------------	---------	----------	-------------------

Segment output pin	СОМЗ	СОМ2	COM1
\$27	D79	D80	D81
S28	D82	D83	D84
S29	D85	D86	D87
S30	D88	D89	D90
S31	D91	D92	D93
S32	D94	D95	D96
S33	D97	D98	D99
S34	D100	D101	D102
\$35	D103	D104	D105
S36	D106	D107	D108
S37	D109	D110	D111
S38	D112	D113	D114
S39	D115	D116	D117
S40	D118	D119	D120
S41	D121	D122	D123
S42	D124	D125	D126
S43	D127	D128	D129
S44	D130	D131	D132
S45	D133	D134	D135
S46	D136	D137	D138
S47	D139	D140	D141
S48	D142	D143	D144
S49	D145	D146	D147
S50	D148	D149	D150
S51	D151	D152	D153
S52	D154	D155	D156

For example, the table below lists the segment output states for the S11 output pin.

Display data		Display data	
D31	D32	D33	Segment output pin (S11) state
0	0	0	The LCD segments corresponding to COM1 to COM3 are off.
0	0	1	The LCD segments corresponding to COM1 is on.
0	1	0	The LCD segments corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM1 and COM2 are on.
1	0	0	The LCD segments corresponding to COM3 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM2 and COM3 are on.
1	1	1	The LCD segments corresponding to COM1 to COM3 are on.

1/2 Bias, 1/3 Duty Drive Technique

	+ fo		
COM1			۷oo
	│ ┡ ╺╪┈┊╶┊ │ ┡ ╶┊╶┊╶┊ │ ╿		V _{DD} 1, V _{DD} 2 (1∕2V _{DD}
		┩┊┊┆	VSS
0010			VDD
COM2			VDD 1. VDD2
			Vss
СОМЗ			V _{DD}
COM3		····	V _{DD} 1. V _{DD} 2
			Vss
			•95
LCD driver output when all LCD			
segments corresponding to COM1,			Y ₀₀
COM2, and COM3 are turned off.			V _{DD} 1, V _{DD} 2
		┩┝┥╎╺╍╴	Vss
LCD driver output when only LCD			
segments corresponding to			۷oo
COM1 are on.			V _{DD} 1, V _{DD} 2
	┝┿┩╎┡┿┩╎┡┿┩	· · · · ·	Vss
LCD driver output when only LCD		i i	ooV
segments corresponding to COM2 are on.			V _{DD} 1, V _{DD} 2
	╶┊╞┿┽┊┝┽┦┊┝┽┩┊┝┥	<u>∔</u>	Vss
			55
LCD driver output when LCD			V _{DD}
segments corresponding to			V _{DD} 1, V _{DD} 2
COM1 and COM2 are on.			Vss
			'55
LCD driver output when only LCD			VDD
segments corresponding to			V _{DD} 1, V _{DD} 2
COM3 are on.			Vss
			'55
LCD driver output when LCD			VDD
segments corresponding to			VDD 1. VDD 2
COM1 and COM3 are on.			
			Vss
LCD driver output when LCD			Voo
segments corresponding to			Voo Voo 1 Voo 3
COM2 and COM3 are on.			V _{DD} 1, V _{DD} 2
			Vss
LCD driver output when all LCD			voo
segments corresponding to COM1,			V _{DD} 1. V _{DO} 2
COM2, and COM3 are on.			Vss

1/2 Bias, 1/3 Duty Waveforms

1/3 Blas, 1/3 Duty Drive Technique

INH and Display Control

Since the LSI internal data (D1 to D156, DR, SC, and BU) is undefined when power is first applied, the display is off (S1 to S52, COM1 to COM3 = low) by setting the $\overline{\text{INH}}$ pin low at the same time as power is applied. Then, meaningless display at the power-on can be prevented by transferring serial data from the controller while the display is off and setting $\overline{\text{INH}}$ pin high after the transfer completes. (See Figure 3.)

Figure 3

Sample Application Circuit 1

1/3 Bias (for use with small panels)

A01267

Sample Application Circuit 2

1/3 Bias (for use with normal size panels)

A01268

Sample Application Circuit 3

1/3 Bias (for use with large panels)

A01269

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.