16-bit Microcontroller 512K-byte Flash ROM / 47.5K-byte RAM / 100-pin

LC88FC3H0A is a 16-bit Microcontroller with 512K-byte Flash ROM/47.5Kbyte RAM in 100-pin package. Main features are infrared remote controller receiver circuit (supports PPM and Manchester encoding), 16 channels of 12bit resolution ADC, internal reset circuit, CRC circuit and etc. that are software friendly circuits and these peripheral circuit can contribute to less external components. Also, plenty of serial interface circuits (synchronous serial \times 3, $I^2C \times 3$, UART \times 3) can communicate with other LSIs and are suitable for home appliances and white goods which need complicated control. For software development, there is our original software development environment and with On-Chip Debugging function, it is easy to debug with user's actual application.

Features

- 16-channel 12-bit resolution AD converter
- Infrared remote controller receiver circuit
- CRC operating circuit
- Internal Reset Function

Performance

• 100ns (10.0MHz) VDD=2.7 to 3.6V Ta=-40°C to +85°C

Function Descriptions

- Xstromy16 CPU
 - 4G-byte address space
 - General-purpose registers: 16 bits × 16 registers
- Ports
 - I/O Ports 86
 - Power supply pins 8 (VSS1 to VSS4, VDD1 to VDD4)
- Timer
 - 16-bit timers $\times 8$
- Base timer serving as a time-of-day clock
- Serial interfaces
 - Synchronous SIO interfaces $\times 3$
 - (with automatic transmission capability)
 - Single master I²C/synchronous SIO interface $\times 2$
- Slave I²C/synchronous SIO interface
- Asynchronous SIO (UART) interfaces × 3
- Multifrequency 12-bit PWM modules
- 16-channel 12-bit resolution AD converter
- Watchdog timer
- Infrared remote controller receiver circuit
- CRC operating circuit
- Real time clock
- System clock frequency divider
- CF oscillator circuit, Crystal oscillator circuit, RC oscillator circuit
- 61-source 14-vector interrupt feature
- On-chip debugger function

Application

• Home audio, White goods

* This product is licensed from Silicon Storage Technology, Inc. (USA).

ORDERING INFORMATION

See detailed ordering and shipping information on page 48 of this data sheet.

ON Semiconductor®

www.onsemi.com

TQFP 100,14X14

Pin Assignment (Top view)

Function Details

- Xstromy16 CPU
 - 4G-byte address space
 - General-purpose registers : 16 bits × 16 registers

Flash ROM

- 524288 × 8 bits
- Programming voltage level : 2.7 to 3.6V.
- Block-erasable in 2K byte units.
- Data written in 2-byte units.
- RAM
 - 48640 × 8 bits
- Minimum instruction cycle time (tCYC)
 100 ns (10 MHz), V_{DD} = 2.7 to 3.6V
- Ports
 - Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1 bit units : 86 (P0n P1n, P2n, P3n, P4n, P5n, P6n, P7n, PAn PB0 to PB6, PC2, PD0 to PD5)

: 4 (PC0, PC1, PC3, PC4)

: 8 (VSS1 to 4, VDD1 to 4)

: 1 (RESB)

: 1 (TEST)

- Oscillation/normal withstand voltage I/O ports
- Reset pins
- TEST pins
- Power pins

Timers

- Timer 0 : 16-bit timer that supports PWM/toggle outputs
 - <1> 5-bit prescaler
 - <2> 8-bit PWM \times 2, 8-bit timer + 8-bit PWM mode selectable
 - <3> Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator.
- Timer 1 : 16-bit timer with capture registers
 - <1> 5-bit prescaler
 - <2> May be divided into 2 channels of 8-bit timer
 - <3> Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
- Timer 2 : 16-bit timer with capture registers
 - <1> 4-bit prescaler
 - <2> May be divided into 2 channels of 8-bit timer
 - <3> Clock source selectable from system clock, OSC0, OSC1, and external events
- Timer 3 : 16-bit timer that shpports PWM/toggle outputs
 - <1> 8-bit prescaler
 - <2> 8-bit timer× 2ch or 8-bit timer+8-bit PWM mode selectable
 - <3> Clock source selectable from system clock, OSC0, OSC1, and external events
- Timer 4 : 16-bit timer that supports toggle outputs
- <1> Clock source selectable from system clock and prescaler 0
- Timer 5 : 16-bit timer that supports toggle output
 - <1> Clock source selectable from system clock and prescaler 0
- Timer 6 : 16-bit timer that supports toggle outputs
 - <1> Clock source selectable from system clock and prescaler 1
- Timer 7 : 16-bit timer that supports toggle output
 - ${<}1{>}\operatorname{Clock}$ source selectable from system clock and prescaler 1
 - *Prescaler 0 and 1 are consisted of 4bits and can choose their clock source from OSC0 or OSC1.
- Base timer
 - <1> Clock may be selected from OSC0 (32.768 kHz crystal oscillator) and frequency-divided output of system clock.
 - <2> Interrupts can be generated in 7 timing schemes.

- Real time clock
 - <1> Calender with Jan. 1, 2000 to Dec.31, 2799 including automatic leapyear calculation function.
 - <2> Consisted of Indipendent second-minuit-hour-day-month-yeare-century counters.
- Serial interfaces
 - SIO0 : 8-bit synchronous SIO
 - <1> LSB first/MSB first mode selectable
 - <2> Supports data communication with a data length of 8 bits or less (1 to 8 bits specifiable)
 - <3> Built-in 8-bit baudrate generator (4 tCYC to 512 tCYC transfer clocks)
 - <4> Continuous/automatic data transmission (9- to 32768-bit units specifiable)
 - <5> Interval function (intervals specifiable in 0 to 64tSCK units)
 - <6> Wakeup function
 - SIO1 : 8-bit synchronous SIO
 - <1> LSB first/MSB first mode selectable
 - <2> Supports data communication with a data length of 8 bits or less (1 to 8 bits specifiable)
 - <3> Built-in 8-bit baudrate generator (4 tCYC to 512 tCYC transfer clocks)
 - <4> Continuous/automatic data transmission (9- to 32768-bit units specifiable)
 - <5> Interval function (intervals specifiable in 0 to 64tSCK units)
 - <6> Wakeup function
 - SIO4 : 8-bit synchronous SIO
 - <1> LSB first/MSB first mode selectable
 - <2> Supports data communication with a data length of 8 bits or less (1 to 8 bits specifiable)
 - <3> Built-in 8-bit baudrate generator (4 tCYC to 512 tCYC transfer clocks)
 - <4> Continuous/automatic data transmission (9- to 32768-bit units specifiable)
 - <5> Interval function (intervals specifiable in 0 to 64tSCK units)
 - <6> Wakeup function
 - SMIIC0 : Single master I²C/8-bit synchronous SIO
 - Mode 0 : Single-master mode communication
 - Mode 1 : Synchronous 8-bit serial I/O (MSB first)
 - SMIIC1 : Single master I²C/8-bit synchronous SIO Mode 0 : Single-master mode communication Mode 1 : Synchronous 8-bit serial I/O (MSB first)
 - SLIIC0 : Slave I²C/8-bit synchronous SIO
 - Mode $0 : I^2C$ slave mode communication
 - Mode 1 : Synchronous 8-bit serial I/O (MSB first)
 - Note: usable only with the external clock source

• UART0

<1> Data length : 8 bits (LSB first)

<2> Start bits : 1 bit

<3> Stop bits : 1 bit

<4> Parity bits : None/even parity/odd parity

- <5> Transfer rate : 4/8 cycle
- <6> Baudrate source clock: P07 input signal used as a 1 cycle signal (T0PWMH can be used as a clock source) or Timer4 cycle.
- <7> Full duplex communication
- Note : The "cycle" refers to one period of the baudrate clock source.

• UART2

- <1> Data length : 8 bits (LSB first)
- <2> Start bits : 1 bit
- <3> Stop bits : 1/2 bit
- <4> Parity bits : None/even parity/odd parity
- <5> Transfer rate : 8 to 4096 cycle
- <6> Baudrate source clock: System clock/OSC0/OSC1/P26 input signal
- <7> Wakeup function
- <8> Full duplex communication

Note : The "cycle" refers to one period of the baudrate clock source.

• UART3

- <1> Data length : 8 bits (LSB first)
- <2> Start bits : 1 bit
- <3> Stop bits : 1/2 bit
- <4> Parity bits : None/even parity/odd parity
- <5> Transfer rate : 8 to 4096 cycle
- <6> Baudrate source clock: System clock/OSC0/OSC1/P36 input signal
- <7> Wakeup function
- <8> Full duplex communication

Note : The "cycle" refers to one period of the baudrate clock source.

■ AD converter

- <1> 12/8 bits resolution selectable
- <2> Analog input: 16 channels
- <3> Comparator mode

■ PWM

- PWM0 : Multifrequency 12-bit PWM × 2 channels (PWM0A and PWM0B)
 - <1>2-channel pairs controlled independently of one another
 - <2> Clock source selectable from system clock or OSC1
 - <3> 8-bit prescaler: TPWMR0= (prescaler value + 1) × clock period
 - <4> 8-bit fundamental wave PWM generator circuit + 4-bit additional pulse generator circuit
 - <5> Fundamental wave PWM mode
 - Fundamental wave period : 16 TPWMR0 to 256 TPWMR0
 - High pulse width : 0 to (Fundamental wave period TPWMR0)
 - <6> Fundamental wave + additional pulse mode

```
Fundamental wave period : 16 TPWMR0 to 256 TPWMR0
```

- Overall period : Fundamental wave period × 16
- High pulse width: 0 to (Fundamental wave period TPWMR0)
- CRC operating circuit
- Watchdog timer
 - <1> Driven by the base timer + internal watchdog timer dedicated counter
 - <2> Interrupt or reset mode selectable

- Infrared Remote Controller Receiver Circuit
 - 1) Noise rejection function (noise filter time constant: Approx. 120µs when the 32.768kHz crystal oscillator is selected as the reference clock source)
 - 2) Supports data encording systems such as PPM (Pulse Position Modulation) and Manchester encording
 - 3) X'tal HOLD mode release function
- Internal Reset Function
 - Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected through option configuration.
 - Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level can be selected by option configuration.
- Interrupts (peripheral function)
 - 61 sources (33 modules), 14 vector addresses
 - <1> Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - <2> When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Interrupt Module
1	08000H	Watchdog timer (1)
2	08004H	Base timer (2)
3	08008H	Timer 0 (2)
4	0800CH	INT0 (1)
5	08014H	INT1 (1)
6	08018H	INT2 (1) / timer 1 (2) / UART2 (4)
7	0801CH	INT3 (1) / timer 2 (4) / SMIIC0 (1) / SLIIC1 (1)
8	08020H	INT4 (1) / timer 3 (2) / Infared remote control receiver(4)
9	08024H	INT5 (1) / timer 4 (1) / SIO1 (2)
10	0802CH	PWM0 (1) / SMIIC1(1)
11	08030H	ADC (1) / timer 5 (1) / SIO4(2)
12	08034H	INT6 (1) / timer 6 (1) / UART 3 (4)
13	08038H	INT7 (1) / SIO0 (2) / SIO0(2)
14	0803CH	Port 0 (3) / Port 5 (8) / RTC (1) / CRC (1)

• 3 priority levels selectable

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

• A number enclosed in parentheses denotes the number of sources.

- Subroutine stack : RAM area
- Subroutine calls that automatically save PSW, interrupt vector calls: 6 bytes
- Subroutine calls that do not automatically save PSW: 4 bytes

Multiplication/division instructions

- 16 bits × 16 bits (4 tCYC execution time)
- 16 bits ÷ 16 bits (18 to 19 tCYC execution time)
- 32 bits ÷ 16 bits (18 to 19 tCYC execution time)

Oscillator circuits

- RC oscillator circuit (internal)
- : For system clock
- CF oscillator circuit (built-in Rf circuit) : For system clock(OSC1)
- Crystal oscillator circuit (built-in Rf circuit) : For low-speed system clock (OSC0)
- SLRC oscillator circuit (internal) : For system clock (In the case of exception processing)
- VCO oscillator circuit

: For timer3, 4, 5, 6, 7 clock

- System clock divider function
 - Can run on low current.
 - 1/1 to 1/128 of the system clock frequency can be set.
- Standby function
 - HALT mode : Halts instruction execution while allowing the peripheral circuits to continue operation.
 - <1> Oscillation is not stopped automatically.
 - <2> Released by a system reset or occurrence of an interrupt.
 - HOLD mode : Suspends instruction execution and the operation of the peripheral circuits.
 - <1> OSC1, RC, and OSC0 oscillations automatically stop.
 - <2> There are six ways of releasing the HOLD mode:
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, INT5, INT6, and INT7 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established at port 5
 - (5) Having an interrupt established at SIO0, SIO1 or SIO4
 - (6) Having an interrupt established at UART2 or UART3
 - HOLDX mode : Suspends instruction execution and the operation of the peripheral circuits except those which run on OSC0.
 - <1> OSC1 and RC oscillations automatically stop.
 - <2> OSC0 maintains the state that is established when the HOLDX mode is entered.
 - <3> There are nine ways of releasing the HOLDX mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, INT5, INT6, and INT7 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established at port 5
 - (5) Having an interrupt source established at the base timer circuit
 - (6) Having an interrupt established at SIO0, SIO1 or SIO4
 - (7) Having an interrupt established at UART2 or UATR3
 - (8) Having an interrupt established at Infared remote control receiver.
 - (9) Having an interrupt source established at the real time clock circuit
- On-chip debugger function
 - Supports software debugging with the IC mounted on the target board.
 - Supports source line debugging and tracing functions, and breakpoint setting and real time display.
 - Single-wire communication
- Package form
 - TQFP100, 14×14 : Pb-Free and Halogen Free type

Development tools

• On-chip debugger : EOCUIF1 or EOCUIF2 + LC88FC3H0A

■ Programming board

Package	Programming Board
TQFP 100, 14 × 14	W88F52TQ

■ Flash ROM Programmer

Maker		Model	Supported Version	Device
ON	Single / Gang programmer	SKK Type C (SanyoFWS)	Application Version After 1.08A Chip Data Version After 2.51	LC88FC3x0
Semiconductor	On-board Single programmer	FWS-X16DI Type 3	Application Version After 1.08A Chip Data Version After 2.51	LC88FC3x0

Package Dimensions unit : mm

TQFP 100, 14x14 CASE 932AN-01 ISSUE O

TQFP100,14×14 (Pb-Free and Halogen Free type)

System Block Diagram

Pin Description

Pin Name	I/O	Description
VSS1, VSS2,	_	– power sources
VSS3, VSS4		
VDD1, VDD2,	-	+ power sources
VDD3, VDD4		
Port 0	I/O	• 8-bit I/O port
P00 to P07		• I/O specifiable in 1-bit units
100 10 10,		• Pull-up resistors can be turned on and off in 1 bit units
		• HOLD release input (P00 to P03, P04, P05)
		• Port 0 interrupt input (P00 to P03, P04, P05)
		Pin functions
		P06 : Timer 0L output
		P07 : Timer 0L output/UART0 clock input
Port 1	I/O	• 8-bit I/O port
P10 to P17		• I/O specifiable in 1-bit units
110 00 11,		• Pull-up resistors can be turned on and off in 1 bit units
		Pin functions
		P10 : SIO0 data output
		P11 : SIO0 data input/pulse input/output
		P12 : SIO0 clock input/output
		P13 : UART0 transmit
		P14 : Timer 3L output/UART0 receive
		P15 : Timer 3H output
		P16 : UART2 receive
		P17 : UART2 transmit
Port 2	I/O	• 8-bit I/O port
P20 to P27		• I/O specifiable in 1-bit units
		• Pull-up resistors can be turned on and off in 1 bit units
		• Pin functions
		P20 : INT4 input/HOLD release input/timer 3 event input/
		timer 2L capture input/timer 2H capture input
		P21 : INT5 input/HOLD release input/timer 3 event input/
		timer 2L capture input/timer 2H capture input
		P22 : SMIIC0 clock input/output
		P23 : SMIIC0 bus input/output/data input
		P24 : SMIIC0 data output (used in 3-wire SIO mode)
		P25 : Timer 4 output
		P26 : Timer 5 output
		Interrupt acknowledge type
		INT4, INT5 : H level, L level, H edge, L edge, both edges

Continued on next page.

Continued from preceding page.

Pin Name	I/O	Description
Port 3	I/O	• 8-bit I/O port
P30 to P37		• I/O specifiable in 1-bit units
150 10 157		• Pull-up resistors can be turned on and off in 1 bit units
		• Pin functions
		P30 : INT0 input/HOLD release/timer 2L capture input
		P31 : INT1 input/HOLD release/timer 2H capture input
		P32 : INT2 input/HOLD release/timer 2 event input/timer 2L capture input/ Infrared Remote Controller Receiver input
		P33 : INT3 input/HOLD release/timer 2 event input/timer 2H capture input
		P34 : UART3 receive
		P35 : UART3 transmit
		P36 : Timer 6 output
		P37 : Timer 7 output
		Interrupt acknowledge type INT0 to INT3 : H level, L level, H edge, L edge, both edges
Port 4	I/O	• 8-bit I/O port
	1/0	• I/O specifiable in 1-bit units
P40 to P47		 Pull-up resistors can be turned on and off in 1 bit units
		Pin functions
		P40 : INT6 input/HOLD release input
		P41 : INT7 input/HOLD release input
		P43 : SIO1 data output
		P44 : SIO1 data input/bus input/output
		P45 : SIO1 clock input/output P46 : PWM0A output
		P47 : PWM0Boutput
		Interrupt acknowledge type
		INT6, INT7 : H level, L level, H edge, L edge, both edges
Port 5	I/O	• 8-bit I/O port
P50 to P57		• I/O specifiable in 1-bit units
		• Pull-up resistors can be turned on and off in 1 bit units
		HOLD release input
		• Port 0 interrupt input
Port 6	I/O	• 8-bit I/O port
P60 to P67		• I/O specifiable in 1-bit units
		• Pull-up resistors can be turned on and off in 1 bit units
		• Pin functions
		AN0 (P60) to AN7 (P67) : AD converter input port
Port 7	I/O	• 8-bit I/O port
P70 to P77		• I/O specifiable in 1-bit units
		• Pull-up resistors can be turned on and off in 1 bit units
		• Pin functions
		AN8 (P70) to AN15 (P77) : AD converter input port

Continued on next page.

Continued from preceding page.

Pin Name	I/O	Description
Port A	I/O	• 8-bit I/O port
PA0 to PA7		• I/O specifiable in 1-bit units
1110 to 1117		• Pull-up resistors can be turned on and off in 1 bit units
		Multiplexed pin functions
		PA0 : SIO4 data output
		PA1 : SIO4 data input/pulse input/output
		PA2 : SIO4 clock input/output
		PA3 : SIO4 chip select input
		PA4 : SLIIC0 clock input
		PA5 : SLIIC0 bus input/output/data input PA6 : SLIIC0 data output (used in 3-wire SIO mode)
Port B	I/o	• 7-bit I/O port
	1/0	• I/O specifiable in 1-bit units
PB0 to PB6		 Pull-up resistors can be turned on and off in 1 bit units
		• Multiplexed pin functions
		PB4 : SMIIC1 clock input/output
		PB5 : SMIIC1 bus input/output/data input
		PB6 : SMIIC1 data output (used in 3-wire SIO mode)
Port C	I/O	• 5-bit I/O port
PC0 to PC4		• I/O specifiable in 1-bit units
		• Pull-up resistors can be turned on and off in 1 bit units(PC2)
		• Pin functions
		PC0 : 32.768 kHz crystal oscillator input
		PC1 : 32.768 kHz crystal oscillator output
		PC2 : FILT of VCO
		PC3 : Ceramic oscillator input
	1/0	PC4 : Ceramic oscillator output/VCO output
Port D	I/O	• 6-bit I/O port
PD0 to PD5		• I/O specifiable in 1-bit units
TEOT	L/O	Pull-up resistors can be turned on and off in 1 bit units
TEST	I/O	• TEST pin
		• Used to communicate with on-chip debugger.
RESB	L/O	Connects an external 100 kΩ pull-down resistor.
KE3B	I/O	Reset pin

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Output Type	Pull-up Resistor		
P00 to P07		CMOS			
P10 to P17 P20 to P27 P30 to P37 P40 to P47 P50 to P57 P60 to P67 P70 to P77 PA0 to PA7 PB0 to PB6	1 bit	Able to program special functions'output type from CMOS output or Nch-opendrain	Programmable		
P60 to P67 P70 to p77 PD0 to PD5 PC2		CMOS			
PC0	_	N-channel open drain (32.768 kHz crystal oscillator input)	None		
PC1	Nch-open drain		None		
PC3	- CMOS (ceramic oscillator input)		None		
PC4	_	CMOS (ceramic oscillator output)	None		

* Make the following connection to minimize the noise input to the VDD1 pin and prolong the backup time. Be sure to electrically short the VSS1, VSS2, VSS3 and VSS4 pins.

Example 1 : When data is being backed up in the HOLD mode, the H level signals to the output ports are fed by the backup capacitors.

Example 2 : When data is being backed up in the HOLD mode, the H level output at any ports is not sustained and is unpredictable.

■ Absolute Maximum Ratings at Ta=25°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V

	Parameter	Symbol	Applicable Pin	Conditions			Specifi	cation	
Maximum supply		Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Maximum supply voltage		V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3, V _{DD} 4	$V_{DD}1=V_{DD}2=V_{DD}3$ $=V_{DD}4$		-0.3		+4.6	
Inpu	ut voltage	VI (1)	RESB			-0.3		V _{DD} +0.3	v
Inpu	ut/output voltage	VIO (1)	Ports 0, 1, 2 Ports 3, 4, 5 Ports 6, 7 Ports A, B, C, D			-0.3		VDD +0.3	
High level output current	Peak output current	IOPH (1)	Ports 0, 1, 2, 3 P40 to P45 Ports 7, A, D PB2 to PB6	CMOS output selected Per applicable pin		-7.5			
outpu		IOPH (2)	P46, P47 PB0, PB1	Per applicable pin		-12.5			
ıt curr		IOPH (3)	Port 5, 6 PC0 to PC4	Per applicable pin		-4.5			
ent	Average output current (Note 1-1)	IOMH (1)	Ports 0, 1, 2, 3 P40 to P45 Ports 5, 6, 7, A PB2 to PB6 Ports D	CMOS output selected Per applicable pin		-5			
		IOMH (2)	P46, P47 PB0, PB1	Per applicable pin		-10			
		IOMH (3)	Port 5, 6 PC0 to PC4	Per applicable pin		-3			
	Total output current	$\Sigma IOAH(1)$	Pprts 5 PC0 to PC4	Total of currents at applicable pins		-10			
		$\Sigma IOAH(2)$	Port 6	Total of currents at applicable pins		-10			mA
		$\Sigma IOAH(3)$	Port 5, 6 PC0 to PC4	Total of currents at applicable pins		-20			
		$\Sigma IOAH (4)$	Ports 1,D1 P20 to P21	Total of currents at applicable pins		-20			
		$\Sigma IOAH (5)$	P22 to P27	Total of currents at applicable pins		-20			
		$\Sigma IOAH$ (6)	Ports 1, 2, D	Total of currents at applicable pins		-40			
		$\Sigma IOAH(7)$	Ports 4	Total of currents at applicable pins		-20			
		Σ IOAH (8)	Ports 0, 3	Total of currents at applicable pins		-20			
		$\Sigma IOAH (9)$	Ports 0, 3, 4	Total of currents at applicable pins		-40			
		ΣIOAH (10)	Ports B, 7	Total of currents at applicable pins		-20			1
		ΣIOAH (11)	Ports A	Total of currents at applicable pins		-20			1
		ΣIOAH (12)	Ports 7, A, B	Total of currents at applicable pins		-40			1

Note 1-1 : Average output current refers to the average of output currents measured for a period of 100 ms.

Continued on next page.

Continued from preceding page.

	Parameter	Symbol	Applicable Pin	Conditions			Specifi	cation	
	ratameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Low level output current	Peak output current	IOPL (1)	Ports 0, 1, 3, 4 Ports 7, D P20, P21, P24 to P27 PA0 to PA4, PA6, PA7 PB0 to PB4, PB6,	Per applicable pin				15	
ut current		IOPL (2)	P22, P23 PA4, PA5 PB4, PB5	Per applicable pin				20	
		IOPL (3)	Ports 5, 6 PC0 to PC4	Per applicable pin				7.5	
	Average output current (Note 1-1)	IOML (1)	Ports 0, 1, 3, 4 Ports 7, D P20, P21, P24 to P27 PA0 to PA4, PA6, PA7 PB0 to PB4, PB6, PB7	Per applicable pin				12.5	
		IOML (2)	P22, P23 PA4, PA5 PB4, PB5	Per applicable pin				15	
		IOML (3)	Ports 5, 6 PC0 to PC4	Per applicable pin				5	
	Total output current	$\Sigma IOAL(1)$	Ports 5 PC0 to PC2	Total of currents at applicable pins				10	mA
		$\Sigma IOAL(2)$	Port 6 PC3 to PC4	Total of currents at applicable pins				10	
		$\Sigma IOAL(3)$	Port 5, 6 PC0 to PC4	Total of currents at applicable pins				20	
		$\Sigma IOAL$ (4)	Ports 1, D P20, P21	Total of currents at applicable pins				35	
		$\Sigma IOAL(5)$	P22 to P27	Total of currents at applicable pins				35	
		$\Sigma IOAL$ (6)	Ports 1, 2, D	Total of currents at applicable pins				70	
		$\Sigma IOAL(7)$	Port 4	Total of currents at applicable pins				35	
		ΣIOAL (8)	Port 0, 3	Total of currents at applicable pins				35	
		ΣIOAL (9)	Port 0, 3, 4	Total of currents at applicable pins				70	
		$\Sigma IOAL (10)$	Port 7, B	Total of currents at applicable pins				35	
		$\Sigma IOAL(11)$	Port A	Total of currents at applicable pins				35	1
		$\Sigma IOAL (12)$	Port 7, A, B	Total of currents at applicable pins				70	
	owable power ipation	Pd max	TQFP100	Ta=-40 to +85°C Package with thermal resistance bord (Note 1-2)				460	mW
-	erating ambient perature	Topr		, ,		-40		+85	
	rage ambient perature	Tstg				-55		+125	°C

Note 1-1 : Average output current refers to the average of output currents measured for a period of 100 ms. Note 1-2 : SEMI standards thermal resistance board (size : $76.1 \times 114.3 \times 1.6$ tmm, glass epoxy) is used.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Parameter	Samah a l	Aliashla Din /Danasha	Carlitiana		Specification			
Parameter	Symbol	Applicable Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage (Note 2-1)	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	$0.098 \mu s \ \leq tCYC \leq 66 \mu s$		2.7		3.6	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode		2.0		3.6	
High level input voltage	VIH (1)	Ports 0, 1, 2, 3, 4 Port 5, A, B		2.7 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	VIH (2)	Ports 6, 7, D,PC2		2.7 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	VIH (3)	RESB PC0, PC1, PC3, PC4		2.7 to 3.6	0.75V _{DD}		V _{DD}	
	VIH (4)	P22, P23, PA4, PA5, PB4, PB5 I2C side		2.7 to 3.6	0.7V _{DD}		V _{DD}	V
Low level input voltage	VIL (1)	When ports 1, 2, 3, 4, 5, A and port B, PnFSAn=0 Ports 0, 6, 7, D, PC2		2.7 to 3.6	V _{SS}		0.2V _{DD}	
	VIL (2)	When ports 1, 2, 3, 4, 5, A and port B, PnFSAn=1		2.7 to 3.6	V _{SS}		0.2V _{DD}	
	VIL (3)	CF1, RESB PC0, PC1,PC3, PC4		2.7 to 3.6	v _{ss}		0.25V _{DD}	
	VIL (4)	P22, P23, PA4, PA5, PB4, PB5 I2C side		2.7 to 3.6	v _{ss}		0.3V _{DD}	
Instruction cycle time (Note 2-1)	tCYC			2.7 to 3.6	0.098		66	μs
External system clock frequency	FEXCF (1)	CF1	 CF2 pin open System clock frequency division ratio = 1/1 External system clock DUTY50±5% 	2.7 to 3.6	0.1		10	MHz
			 CF2 pin open System clock frequency division ratio = 1/2 	2.7 to 3.6	0.2		20	

■ Allowable Operating Conditions at Ta=-40 to +85°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V

Note 2-1 : Relationship between tCYC and oscillation frequency is 1/FmCF when frequency division ratio is 1/1 and 2/FmCF when the ratio is 1/2.

Continued on next page.

Continued from preceding page.

	Symbol	ymbol Applicable Pin /Remarks			Specification			
Parameter			Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency range (Note 2-2)	FmCF	PC3(CF1), PC4(CF2)	10 MHz ceramic oscillator mode See Fig. 1.	2.7 to 3.6		10		MI
	FmRC		Internal RC oscillation	2.7 to 3.6	0.5	1.0	2.0	MHz
	FmSLRC		Internal low-speed RC oscillation	2.7 to 3.6	18	30	45	
	FsX'tal	XT1, XT2	32.768 kHz crystal oscillator mode See Fig. 2.	2.7 to 3.6		32.768		kHz
	FmVCO(1)		VCO oscillator When setting FRQSEL=0 See Fig. 9.	2.7 to 3.6	12		28	
	FmVCO(2)		VCO oscillator When setting FRQSEL=1 See Fig. 9.	2.7 to 3.6	38		70	MHz
	FmVCO(5)		VCO oscillator	2.7 to 3.6		Note 2-3		

Note 2-2 : See Tables 1 and 2 for oscillator constant values.

Note 2-3 : VCO oscillation frequency = Ceramic oscillator frequency × Setting point of SELREF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V$

Parameter	Symbol	Applicable Pin	Conditions			Specific	ation	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	IIH (1)	Ports 0, 1, 2 Ports 3, 4, 5 Ports 6, 7 Ports A, B,C, D RESB	Output disabled Pull-up resistor off VIN=VDD (including output Tr. off leakage current)	2.7 to 3.6			1	
Low level input current	IIL (1)	Ports 0, 1, 2 Ports 3, 4, 5 Ports 6, 7 Ports A, B, C, D RESB	Output disabled Pull-up resistor off VIN=VSS (including output Tr. off leakage current)	2.7 to 3.6	-1			μΑ
High level output voltage	VOH (1)	Ports 0, 1, 2, 3 Ports 5, 6	IOH=-0.4mA	3.0 to 3.6	V _{DD} -0.4			
-	VOH (2)	Ports A, D, PC2 P40 to P45 PB2 to PB6	IOH=-0.2mA	2.7 to 3.6	V _{DD} -0.4			
		P46, P47	IOH=-1.6mA	3.0 to 3.6	V _{DD} -0.4			
	VOH (4)	PB0, PB1	IOH=-1.0mA	2.7 to 3.6	V _{DD} -0.4			
	VOH (5)	PC0, PC1,	IOH=-1.0mA	3.0 to 3.6	V _{DD} -0.4			
	VOH (6)	PC3, PC4,	IOH=-0.4mA	2.7 to 3.6	V _{DD} -0.4			
Low level output voltage	VOL (1)	Ports 0, 1, 3 , 4 Ports 5, 6, 7, D PC2	IOL=1.6mA	3.0 to 3.6			0.4	v
	VOL (2)	P20 to P21, P24 to P27 PA0 to PA3 PA6 to PA7 PB0 to PB3, PB6	IOL=1.0mA	2.7 to 3.6			0.4	
	VOL (3)	P22, P23,	IOL=3.0mA	3.0 to 3.6			0.4	
	VOL (4)	PA4, PA5, PB4, PB5	IOL=1.3mA	2.7 to 3.6			0.4	-
	VOL (5)	PC0, PC1,	IOL=1.0mA	3.0 to 3.6			0.4	
	VOL (6)	PC3, PC4,	IOL=0.4mA	2.7 to 3.6			0.4	
Pull-up resistor	Rpu (1)	Ports 0, 1, 2, 3 Ports 4, 5, 6, 7	VOH=0.9V _{DD}	3.0 to 3.6	15	35	80	kΩ
	Rpu (2)	Ports A, B, D, PC2		2.7 to 3.6	15	35	100	Ki L
Hysteresis voltage	VHYS	RESB When ports 1, 2, 3, 4, A, B PnFSAn=1		2.7 to 3.6		0.1V _{DD}		v
Pin capacitance	СР	All pins	Pins other than that under test V _{IN} =V _{SS} f=1 MHz Ta=25°C	2.7 to 3.6		10		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

• Serial I/O Characteristics at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V$ Serial I/O Characteristics (Wakeup Function Disabled) (Note 4-1-1)

	r		0 1 1	Applicable	Q IV			Specif	ication	
	ŀ	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Seri	Inpu	Period	tSCK (1)	SCK0 (P12)	• See Fig. 6.		4			
Serial clock	Input clock	Low level pulse width	tSCKL (1)				2			
,,		High level	tSCKH (1)				2			
		pulse width	tSCKHA (1)		 Automatic communication mode See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (1a)		 Automatic communication mode See Fig. 6. 		23			tCYC
			tSCKHBSY (1b)		 Mode other than automatic communication mode See Fig. 6. 		4			
	Output clock	Period	tSCK (2)	SCK0 (P12)	CMOS output selected See Fig. 6.		4			
	clock	Low level pulse width	tSCKL (2)					1/2		tSCK
		High level pulse width	tSCKH (2)			-		1/2		
			tSCKHA (2)		 Automatic communication mode CMOS output selected See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (2a)		 Automatic communication mode CMOS output selected See Fig. 6. 		4		23	tCYC
			tSCKHBSY (2b)		 Mode other than automatic communication mode See Fig. 6. 		4			
Serial input	Dat	ta setup time	tsDI (1)	SI0 (P11), SB0 (P11)	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (1)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (1)	SO0 (P10), SB0 (P11)	• (Note 4-1-2)				1tCYC +0.05	μs
	Output clock		tdDO (2)		• (Note 4-1-2)	2.7 to 3.6			1tCYC +0.05	
		4 1 1 · Thos		ng ara thaar	ation values. Add margin					

Note 4-1-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

	n		Course a l	Applicable	Conditions		Specification			
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ max		unit
Serial	Inpu	Period	tSCK (3)	SCK0 (P12)	• See Fig. 6.		2			
al clock	Input clock	Low level pulse width	tSCKL (3)				1			
		High level	tSCKH (3)			2.7 to 3.6	1			tCYC
		pulse width	tSCKHBSY (3)				2			
Serial	Dat	ta setup time	tsDI (2)	SI0 (P11), SB0 (P11)	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (2)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (3)	SO0 (P10), SB0 (P11)	• (Note 4-2-2)	2.7 to 3.6			1tCYC +0.05	μs

SIO0 Serial Input/Output Characteristics (Wakeup Function Enabled) (Note 4-2-1)

 Note 4-2-1 : These specifications are theoretical values. Add margin depending on its use.

 Note 4-2-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

SIO1 Serial Input/Output Characteristics (Wakeup Function Disabled) (Note 4-3-1)

	n	Parameter	Symbol	Applicable	Conditions			Specif	ication	
	г	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Seri	Inpu	Period	tSCK (4)	SCK1 (P45)	• See Fig. 6.		4			
Serial clock	Input clock	Low level pulse width	tSCKL (4)				2			
		High level	tSCKH (4)				2			
		pulse width	tSCKHA (4)		 Automatic communication mode See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (4a)		 Automatic communication mode See Fig. 6. 		23			tCYC
			tSCKHBSY (4b)		 Mode other than automatic communication mode See Fig. 6. 		4			
	Output clock	Period	tSCK (5)	SCK1 (P45)	CMOS output selected See Fig. 6.		4			
	t clock	Low level pulse width	tSCKL (5)	_				1/2		tSCK
		High level pulse width	tSCKH (5)	-				1/2		ISCK
			tSCKHA (5)		 Automatic communication mode CMOS output selected See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (5a)		 Automatic communication mode CMOS output selected See Fig. 6. 		4		23	tCYC
			tSCKHBSY (5b)		Mode other than automatic communication mode See Fig. 6.		4			
Serial inp	Dat	ta setup time	tsDI (3)	SI1 (P44), SB1 (P44)	 Specified with respect to rising edge of SIOCLK 		0.03			_
input	Dat	ta hold time	thDI (3)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (4)	SO1 (P43), SB1 (P44)	• (Note 4-3-2)				1tCYC +0.05	μs
	Output clock		tdDO (5)		• (Note 4-3-2)	2.7 to 3.6			1tCYC +0.05	

Note 4-3-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-3-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

	п	arameter	Saurah a l	Applicable	Conditions			Specif	ication	
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Seria	Inpu	Period	tSCK (6)	SCK1 (P45)	• See Fig. 6.		2			
Serial clock	Input clock	Low level pulse width	tSCKL (6)				1			
		High level	tSCKH (6)			2.7 to 3.6	1			tCYC
		pulse width	tSCKHBSY (6)				2			
Serial input	Dat	ta setup time	tsDI (4)	SI1 (P44), SB1 (P44)	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (4)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (6)	SO1 (P43), SB1 (P44)	• (Note 4-4-2)	2.7 to 3.6			1tCYC +0.05	μs

SIO1 Serial Input/Output Characteristics (Wakeup Function Enabled) (Note 4-4-1)

Note 4-4-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-4-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

SIO4 Serial Input/	Output Ch	aracteristi	ics (Wakeup Function Disabled) (Note 4-5-1)

	n		G 1 1	Applicable				Specif	ication	
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Seri	Inpu	Period	tSCK (7)	SCK4 (PA2)	• See Fig. 6.		4			
Serial clock	Input clock	Low level pulse width	tSCKL (7)				2			_
		High level	tSCKH (7)				2			
		pulse width	tSCKHA (7)		 Automatic communication mode See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (7a)		 Automatic communication mode See Fig. 6. 		23			tCYC
			tSCKHBSY (7b)		 Mode other than automatic communication mode See Fig. 6. 		4			
	Output clock	Period	tSCK (8)	SCK4 (PA2)	CMOS output selectedSee Fig. 6.		4			
	t clock	Low level pulse width	tSCKL (8)					1/2		JO OV
		High level pulse width	tSCKH (8)					1/2		tSCK
			tSCKHA (8)		 Automatic communication mode CMOS output selected See Fig. 6. 	2.7 to 3.6	6			
			tSCKHBSY (8a)		 Automatic communication mode CMOS output selected See Fig. 6. 		4		23	tCYC
			tSCKHBSY (8b)		 Mode other than automatic communication mode See Fig. 6. 		4			
Serial input	Dat	ta setup time	tsDI (5)	SI4 (PA1), SB4 (PA1)	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (5)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (7)	SO4 (PA0), SB14(PA1)	• (Note 4-5-2)				1tCYC +0.05	μs
	Output clock		tdDO (8)		• (Note 4-5-2)	2.7 to 3.6			1tCYC +0.05	

Note 4-5-1 : These specifications are theoretical values. Add margin depending on its use. Note 4-5-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

	n	arameter	Symbol	Applicable	Conditions			Specif	ication	
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Seria	Inpu	Period	tSCK (9)	SCK4 (P45)	• See Fig. 6.		2			
Serial clock	Input clock	Low level pulse width	tSCKL (9)				1			
		High level	tSCKH (9)			2.7 to 3.6	1			tCYC
		pulse width	tSCKHBSY (9)				2			
Serial input	Dat	ta setup time	tsDI (6)	SI4 (P44), SB4 (P44)	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (6)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Input clock	Output delay time	tdD0 (9)	SO4 (P43), SB4(P44)	• (Note 4-6-2)	2.7 to 3.6			1tCYC +0.05	μs

SIO4 Serial Input/Output Characteristics (Wakeup Function Enabled) (Note 4-6-1)

 Note 4-6-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-6-2 : Specified with respect to the falling edge of SIOCLK. Specified as the interval up to the time an output change begins in the open drain output mode. See Fig. 6.

				Applicable				Specif	ication	
	P	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Serial clock	Input clock	Period	tSCK (10)	SM0CK (P22)	See Fig. 6.		4			
clock	clock	Low level pulse width	tSCKL (10)			2.7 to 3.6	2			~~~~
		High level pulse width	tSCKH (10)				2			tCYC
	Outpu	Period	tSCK (11)	SM0CK (P22)	CMOS output selected See Fig. 6.		4			
	Output clock	Low level pulse width	tSCKL (11)			2.7 to 3.6		1/2		- COV
		High level pulse width	tSCKH (11)					1/2		tSCK
Serial input	Dat	ta setup time	tsDI (7)	SM0DA (P23),	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (7)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Ou	tput delay time	tdD0 (10)	SM0DO (P24), SM0DA (P23)	 Specified with respect to falling edge of SIOCLK Specified as interval up to time when output state starts changing. See Fig. 6. 	2.7 to 3.6			1tCYC +0.05	μs

SMIIC0 Simple SIO Mode Input/Output Characteristics (Note 4-7-1)

 Note 4-7-1 : These specifications are theoretical values. Add margin depending on its use.

SMIIC0 I²C Mode Input/Output Characteristics (Note 4-8-1) (Note 4-8-2) (Note 4-8-4)

	р	arameter		Symbol	Applicable	Conditions			Specif	ication	1
	1	arameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Clock	Input clock	Period		tSCL	SM0CK (P22)	• See Fig. 8.		5			
	lock	Low level pulse widt	h	tSCLL			2.7 to 3.6	2.5			TEL
		High level pulse widt		tSCLH				2			Tfilt
	Output clock	Period		tSCLx	SM0CK (P22)	• Specified as interval up to time when output state starts		10			
	t clock	Low level pulse widt	h	tSCLLx		changing.	2.7 to 3.6		1/2		tSCL
		High level pulse widt		tSCLHx					1/2		ISCL
pin	is inp	K and SM0E out spike ssion time	DA	tsp	SM0CK (P22) SM0DA (P23)	• See Fig. 8.	2.7 to 3.6			1	Tfilt
			Input	tBUF	SM0CK (P22) SM0DA (P23)	• See Fig. 8.		2.5			Tfilt
bet	weer	ease time n start and	Ou	tBUFx	SM0CK (P22) SM0DA (P23)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	5.5			
stop			Output			High-speed clock mode Specified as interval up to time when output state starts changing.		1.6			μs
			lı	tHD;STA	SM0CK (P22) SM0DA (P23)	When SMIIC register control bit, I2CSHDS=0 · See Fig. 8.		2.0			
	urt/re		Input			When SMIIC register control bit I2CSHDS=1 · See Fig. 8.		2.5			Tfilt
tim		tion hold	Ou	tHD;STAx	SM0CK (P22) SM0DA (P23)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	4.1			
			Output			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.0			μs
			Input	tSU;STA	SM0CK (P22) SM0DA (P23)	• See Fig. 8.		1.0			Tfilt
	start up ti	condition me	Out	tSU;STAx	SM0CK (P22) SM0DA (P23)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	5.5			
			Output			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.6			– μs

Demonster		Secondard 1	Applicable	Conditions			Specific	ation	
Parameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	Unit
	Input	tSU;STO	SM0CK (P22) SM0DA (P23)	• See Fig. 8.		1.0			Tfilt
Stop condition setup time	Ou	tSU;STOx	SM0CK (P22) SM0DA (P23)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	4.9			
	Output			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.1			μs
	Input	tHD;DAT	SM0CK (P22) SM0DA (P23)	• See Fig. 8.		0			
Data hold time	Output	tHD;DATx	SM0CK (P22) SM0DA (P23)	• Specified as interval up to time when output state starts changing.	2.7 to 3.6	1		1.5	Tfilt
Determine	Input	tSU;DAT	SM0CK (P22) SM0DA (P23)	• See Fig. 8.	274-26	1			
Data setup time	Output	tSU;DATx	SM0CK (P22) SM0DA (P23)	Specified as interval up to time when output state starts changing.	2.7 to 3.6	1tSCL- 1.5Tfilt			Tfilt
	Input	tF	SM0CK (P22) SM0DA (P23)	• See Fig. 8.	2.7 to 3.6			300	
SM0CK and SM0DA pins fall time	Output	tF	SM0CK (P22) SM0DA (P23)	• When SMIIC register control bits PSLW=1, P5V=1	3	20+0.1Cb (Note 4-8-3)		250	ns
	put			 SM0CK, SM0DA port output FAST mode Cb ≤ 100pF 	3.0 to 3.6			100	

Note 4-8-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-8-2 : The value of Tfilt is determined by the values of the register SMIC0BRG, bits 7 and 6 (BRP1, BRP0) and the system clock frequency.

BRP1	BRP0	Tfilt
0	0	tCYC×1
0	1	tCYC×2
1	0	tCYC×3
1	1	tCYC×4

Set bits (BPR1, BPR0) so that the value of Tfilt falls between the following range :

$$250 \text{ ns} \ge \text{Tfilt} > 140 \text{ ns}$$

Note 4-8-3: Cb represents the total loads (in pF) connected to the bus pins. $Cb \le 100 \text{ pF}$

Note 4-8-4: The standard clock mode refers to a mode that is entered by configuring SMIC0BRG as follows :

$$250 \text{ ns} \ge T \text{filt} > 140 \text{ ns}$$

$$BRDQ (bit5) = 1$$

SCL frequency setting $\leq 100 \text{ kHz}$

The high-speed clock mode refers to a mode that is entered by configuring SMIC0BRG as follows : $250 \text{ ns} \ge T \text{filt} > 140 \text{ ns}$

BRDQ (bit5) = 0

SCL frequency setting $\leq 400 \text{ kHz}$

			G 1 1	Applicable				Specif	ication	
	ł	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Serial clock	Input clock	Period	tSCK (12)	SM0CK (PB4)	See Fig. 6.		4			
clock	clock	Low level pulse width	tSCKL (12)			2.7 to 3.6	2			
		High level pulse width	tSCKH (12)				2			tCYC
	Outpu	Period	tSCK (13)	SM0CK (PB4)	CMOS output selected See Fig. 6.		4			
	Output clock	Low level pulse width	tSCKL (13)			2.7 to 3.6		1/2		
		High level pulse width	tSCKH (13)					1/2		tSCK
Serial input	Dat	ta setup time	tsDI (8)	SM0DA (PB5),	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (8)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Ou	tput delay time	tdD0 (12)	SM0DO (PB6), SM0DA (PB5)	 Specified with respect to falling edge of SIOCLK Specified as interval up to time when output state starts changing. See Fig. 6. 	2.7 to 3.6			1tCYC +0.05	μs

SMIIC1 Simple SIO Mode Input/Output Characteristics (Note 4-9-1)

 Note 4-9-1 : These specifications are theoretical values. Add margin depending on its use.

SMIIC1 I²C Mode Input/Output Characteristics (Note 4-10-1) (Note 4-10-2) (Note 4-10-4)

	D			0 1 1	Applicable	C IV			Specif	ication	
	Pa	arameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	unit
Clock	Input clock	Period		tSCL	SM1CK (PB4)	• See Fig. 8.		5			
	lock	Low level pulse widt	h	tSCLL			2.7 to 3.6	2.5			TOTA
		High level pulse widt		tSCLH				2			Tfilt
	Outpu	Period		tSCLx	SM1CK (PB4)	• Specified as interval up to time when output state starts		10			
	Output clock	Low level pulse width	h	tSCLLx		changing.	2.7 to 3.6		1/2		
		High level pulse widt		tSCLHx					1/2		tSCL
pin	s inp	and SM0E out spike sion time)A	tsp	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.	2.7 to 3.6			1	Tfilt
			Input	tBUF	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.		2.5			Tfilt
bet	Bus release time between start and stop		Output	tBUFx	SM1CK (PB4) SM1DA (PB5)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	5.5			
						 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.6			μsec
			In	tHD;STA	SM1CK (PB4) SM1DA (PB5)	 When SMIIC register control bit, I2CSHDS=0 See Fig. 8. 		2.0			
	rt/res		Input			 When SMIIC register control bit I2CSHDS=1 See Fig. 8. 		2.5			Tfilt
tim		on hold	01	tHD;STAx	SM1CK (PB4) SM1DA (PB5)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	4.1			
			Output			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.0			μsec
			Input	tSU;STA	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.		1.0			Tfilt
	start 1p tii	condition me	Ou	tSU;STAx	SM1CK (PB4) SM1DA (PB5)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	5.5			
		me Output	tput			 High-speed clock mode Specified as interval up to time when output state starts changing. 		1.6			– μsec

D		G 1 1	Applicable			S	pecificat	tion	
Parameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	unit
	Input	tSU;STO	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.		1.0			Tfilt
Stop condition setup time	Ou	tSU;STOx	SM1CK (PB4) SM1DA (PB5)	 Standard clock mode Specified as interval up to time when output state starts changing. 	2.7 to 3.6	4.9			
	Output			 High-speed clock mode Specified as interval up to time when output state starts changing. 	-	1.1			μsec
	Input	tHD;DAT	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.		0			
Data hold time	Output	tHD;DATx	SM1CK (PB4) SM1DA (PB5)	• Specified as interval up to time when output state starts changing.	2.7 to 3.6	1		1.5	Tfilt
Data active time	Input	tSU;DAT	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.	274-26	1			
Data setup time	Output	tSU;DATx	SM1CK (PB4) SM1DA (PB5)	• Specified as interval up to time when output state starts changing.	2.7 to 3.6	1tSCL-1.5Tfilt			Tfilt
	Input	tF	SM1CK (PB4) SM1DA (PB5)	• See Fig. 8.	2.7 to 3.6			300	
SM0CK and SM0DA pins fall time	Output	tF	SM1CK (PB4) SM1DA (PB5)	• When SMIIC register control bits PSLW=1, PHV=1	3	20+0.1Cb (Note 4-10-3)		250	ns
	put			 SM0CK, SM0DA port output FAST mode Cb ≤ 100pF 	3 to 3.6			100	

Note 4-10-1 : These specifications are theoretical values. Add margin depending on its use.

Note 4-10-2 : The value of Tfilt is determined by the values of the register SMIC1BRG, bits 7 and 6 (BRP1, BRP0) and the system clock frequency.

BRP1	BRP0	Tfilt
0	0	tCYC×1
0	1	tCYC×2
1	0	tCYC×3
1	1	tCYC×4

Set bits (BPR1, BPR0) so that the value of Tfilt falls between the following range : $250 \text{ ns} \ge \text{Tfilt} > 140 \text{ ns}$

Note 4-10-3 : Cb represents the total loads (in pF) connected to the bus pins. $Cb \le 100 \text{ pF}$

Note 4-10-4 : The standard clock mode refers to a mode that is entered by configuring SMIC0BRG as follows :

 $250 \text{ ns} \ge \text{Tfilt} > 140 \text{ ns}$ BRDQ (bit5) = 1

SCL frequency setting $\leq 100 \text{ kHz}$

The high-speed clock mode refers to a mode that is entered by configuring SMIC1BRG as follows :

 $250 \text{ ns} \ge \text{Tfilt} > 140 \text{ ns}$

BRDQ (bit5) = 0

SCL frequency setting $\leq 400 \text{ kHz}$

	T		0 1 1	Applicable				Specific	cation	
	ľ	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Serial clock	Input clock	Period	tSCK (13)	SL0CK (PA4)	See Fig. 6.		4			
clock	clock	Low level pulse width	tSCKL (13)			2.7 to 3.6	2			tCYC
		High level pulse width	tSCKH (13)				2			
Serial input	Dat	ta setup time	tsDI (9)	SL0DA (PA5),	• Specified with respect to rising edge of SIOCLK		0.03			
input	Dat	ta hold time	thDI (9)		• See Fig. 6.	2.7 to 3.6	0.03			
Serial output	Serial Output delay time		tdD0 (13)	SL0DO (PA6), SL0DA (PA5)	 Specified with respect to falling edge of SIOCLK Specified as interval up to time when output state starts changing. See Fig. 6. 	2.7 to 3.6			1tCYC +0.05	μs

SLIIC0 Simple SIO Mode Input/Output Characteristics (Note 4-11-1)

Note 4-11-1 : These specifications are theoretical values. Add margin depending on its use.

SLIIC1 I²C Mode Input/Output Characteristics (Note 4-12-1) (Note 4-12-2)

	р	arameter		Symbol	Applicable	Conditions			Specif	ication	
	1	arameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	unit
Clock	Input clock	Period		tSCL	SL0CK (PA4)	• See Fig. 8.		5			
	lock	Low level pulse width	1	tSCLL			2.7 to 3.6	2.5			Tfilt
		High level pulse width		tSCLH				2			
pin	ns inp	and SL0DA put spike ssion time		tsp	SLOCK (PA4) SLODA (PA5)	• See Fig. 8.	2.7 to 3.6			1	Tfilt
	wee	ease time n start and	Input	tBUF	SLOCK (PA4) SLODA (PA5)	• See Fig. 8.	2.7 to 3.6	2.5			Tfilt
		estart on hold	Int	tHD;STA	SLOCK (PA4) SLODA (PA5)	 When SMIIC register control bit, I2CSHDS=0 See Fig. 8. 	2.7 to 3.6	2.0			Tfilt
	time		Input			 When SMIIC register control bit I2CSHDS=1 See Fig. 8. 	2.7 10 3.6	2.5			1111
	start up ti	condition me	Input	tSU;STA	SLOCK (PA4) SLODA (PA5)	• See Fig. 8.	2.7 to 3.6	1.0			Tfilt
	op co up ti	ndition me	Input	tSU;STO	SLOCK (PA4) SLODA (PA5)	• See Fig. 8.	2.7 to 3.6	1.0			Tfilt
			Input	tHD;DAT	SL0CK (PA4) SL0DA (PA5)	• See Fig. 8.		0			
Da	Data hol	old time	Output	tHD;DATx	SL0CK (PA4) SL0DA (PA5)	• Specified as interval up to time when output state starts changing.	2.7 to 3.6	1		1.5	Tfilt
De	ta co	tup time	Input	tSU;DAT	SLOCK (PA4) SLODA (PA5)	• See Fig. 8.	2.7 to 3.6	1			TCL
Da	na se	up une	Output	tSU;DATx	SLOCK (PA4) SLODA (PA5)	Specified as interval up to time when output state starts changing.		1tSCL- 1.5Tfilt			Tfilt

D (6 1 1	Applicable			S	pecificat	ion	
Parameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	Min	typ	max	Unit
	Input	tF	SL0CK (PA4) SL0DA (PA5)	• See Fig. 8.	2.7 to 3.6			300	
SL0CK and SL0DA pins fall time	Output	tF	SLOCK (PA4) SLODA (PA5)	When SLIIC0 register control bits PSLW=1, PHV=1	3	20+0.1Cb (Note 4-12-3)		250	ns
	put			 SL0CK, SL0DA port output FAST mode Cb ≤ 100pF 	3.0 to 3.6			100	

Note 4-12-1 : These specifications are theoretical values. Add margin depending on its use. Note 4-12-2 : The value of Tfilt is determined by the values of the register SLICOPCNT, bits 5 and 4 (BRP1, BRP0) and the system clock frequency.

BRP1	BRP0	Tfilt
0	0	tCYC×1
0	1	tCYC×2
1	0	tCYC×3
1	1	tCYC×4

Set bits (BPR1, BPR0) so that the value of Tfilt falls between the following range : $250 \text{ ns} \ge \text{Tfilt} > 140 \text{ ns}$

Note 4-12-3: Cb represents the total loads (in pF) connected to the bus pins. $Cb \le 100 \text{ pF}$

Parameter	Symbol	Applicable Pin/Remarks	Conditions	Specification				
	Symbol			V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR0	U0RX (P13), U0TX (P14), U0BRG (P07)		2.7 to 3.6	4		8	tBGCYC

UART0 Operating Conditions at Ta=-40 to +85°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V

Note 4-9 : tBGCYC denotes one cycle of the baudrate clock source.

UART2 Operating Conditions at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V$

Parameter	Symbol	Applicable Pin/Remarks	Conditions					
raiameter	Symbol			V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR2	U2RX (P16), U2TX (P17),		2.7 to 3.6	8		4096	tBGCYC

Note 4-10: tBGCYC denotes one cycle of the baudrate clock source.

UART3 Operating Conditions at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V$

Parameter	Symbol	Applicable	Conditions			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR3	U3RX (P34), U3TX (P35),		2.7 to 3.6	8		4096	tBGCYC

Note 4-10 : tBGCYC denotes one cycle of the baudrate clock source.

■ Pulse Input Conditions at Ta=-40 to +85°C, VSS1=VSS2=VSS3=VSS4=0V

Daramatar	Symbol	Applicable Pin/Remarks	Conditions			Specification				
Parameter	Symbol	Applicable Pli/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit		
High/low level pulse width	tPIH (1) tPIL (1)	INT0 (P30), INT1 (P31), INT2 (P32), INT3 (P33), INT4 (P20), INT5 (P21), INT6 (P40), INT7 (P41)	 Interrupt source flag can be set. Event inputs for timers 2 and 3 are enabled. 	2.7 to 3.6	2			tCYC		
	tPIL (2)	RESB	Resetting is enabled.	2.7 to 3.6	10			μs		
■ AD Converter Characteristics at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V$ 12-bit AD Conversion Mode

Demonstern	Gh - 1	Applicable Pin	Conditions			Specif	ication	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	NAD	AN0 (P60) to AN7 (P67),		2.7 to 3.6		12		bit
Absolute accuracy	ETAD	AN8 (P70)	(Note 6-1)	2.7 to 3.6			±16	LSB
Conversion time	TCAD12	to AN15 (P77)	Conversion time calculated	3.0 to 3.6	64		115	
				2.7 to 3.6	128		230	μs
Analog input voltage range	VAIN			2.7 to 3.6	V _{SS}		V _{DD}	V
Analog port input current	IAINH		VAIN=V _{DD}	2.7 to 3.6			1	
input curront	IAINL		VAIN=V _{SS}	2.7 to 3.6	-1			μA

- Conversion time calculation formula : TCAD12 = $\left(\frac{52}{\text{AD division ratio}} + 2\right) \times \text{tCYC}$

8-bit AD Conversion Mode

Demonstern	Course of	Applicable Pin	Conditions			Specif	ication	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	NAD	AN0 (P60) to AN7 (P67),		2.7 to 3.6		8		bit
Absolute accuracy	ETAD	AN8 (P70)	(Note 6-1)	2.7 to 3.6			±1.5	LSB
Conversion time	TCAD8	to AN15 (P77)	Conversion time calculated	3.0 to 3.6	39		71	
				2.7 to 3.6	79		140	μs
Analog input voltage range	VAIN			2.7 to 3.6	VSS		V _{DD}	v
Analog port input current	IAINH		VAIN=VDD	2.7 to 3.6			1	
input current	IAINL		VAIN=V _{SS}	2.7 to 3.6	-1			μA

- Conversion time calculation formula : TCAD8 = $\left(\frac{52}{\text{AD division ratio}} + 2\right) \times \text{tCYC}$

Note 6-1 : The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy.

Note 6-2 : The conversion time refers to the interval from the time a conversion starting instruction is issued till the time the complete digital value against the analog input value is loaded in the result register.

The conversion time is twice the normal value when one of the following conditions occurs:

- The first AD conversion is executed in the 12-bit AD conversion mode after a system reset.

- The first AD conversion is executed after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

■ Consumption Current Characteristics at Ta=-40 to +85°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V typ : 3.3V

Demonster	Countral	Applicable	Contitions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 7-1)	IDDOP (1)	V_{DD1} $=V_{DD2}$ $=V_{DD3}$ $=V_{DD4}$	FmCF=10 MHz ceramic oscillator mode FmX'tal=32.768 kHz crystal oscillator mode System clock set to 10 MHz Internal RC oscillation stopped 1/1 frequency division mode	2.7 to 3.6		5.0	12.0	
	IDDOP (2)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768 kHz crystal oscillator mode System clock set to internal RC oscillation 1/1 frequency division mode	2.7 to 3.6		0.8	2.1	mA
	IDDOP (3)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768 kHz crystal oscillator mode System clock set to 32.768 kHz Internal RC oscillation stopped 1/1 frequency division mode	2.7 to 3.6		30	136	μΑ

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Applicable Pin/Remarks	Conditions			Specif	ication	
Parameter	Symbol	P III/ KeIIIaIKS	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 7-1)	IDDHALT (1)	$V_{DD1} = V_{DD2} = V_{DD3} = V_{DD4}$	 HALT mode FmCF=10 MHz ceramic oscillator mode FmX'tal=32.768 kHz crystal oscillator mode System clock set to 10 MHz Internal RC oscillation stopped 1/1 frequency division mode 	2.7 to 3.6		1.5	3.2	
	IDDHALT (2)		 HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768 kHz crystal oscillator mode System clock set to internal RC oscillation 1/1 frequency division mode 	2.7 to 3.6		0.2	0.8	mA
	IDDHALT (3)		 HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768 kHz crystal oscillator mode System clock set to 32.768 kHz Internal RC oscillation stopped 1/1 frequency division mode 	2.7 to 3.6		8.5	78	μΑ

Continued on next page.

Continued from preceding page.

Demonstern	Course al	Applicable Pin/Remarks	Carditiana			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HOLD mode consumption current	IDDHOLD (1)	V _{DD} 1	HOLD mode • CF1=VDD or open (external clock mode)	2.7 to 3.6		0.2	50	
	IDDHOLD (2)		HOLD mode • CF1=VDD or open (external clock mode) • LVD option selected	2.7 to 3.6		1.2	53	
HOLDX mode consumption current	IDDHOLD (3)		HOLDX mode • CF1=VDD or open (external clock mode) • FmX'tal=32.768 kHz crystal oscillator mode	2.7 to 3.6		4.6	71	μΑ
	IDDHOLD (4)		HOLDX mode • CF1=VDD or open (external clock mode) • FmX'tal=32.768 kHz crystal oscillator mode • LVD option selected	2.7 to 3.6		5.6	74	

Note 7-1 : The consumption current value includes none of the currents that flow into the output transistor and internal pull-up resistors.

■ F-ROM Programming Characteristics at Ta=+10 to +55°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V

Parameter	Symbol	Applicable	Conditions			Specifi	ication	tion		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit		
Onboard programming current	IDDFW (1)	V _{DD} 1	Microcontroller erase current current is excluded.	2.7 to 3.6			10	mA		
Onboard programming time	tFW (1)		• 2K-byte erase operation	2.7 to 3.6			25	ms		
	tFW (2)		2-byte programming operation	2.7 to 3.6			45	μs		

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
Por release	PORRL		• Select from option.	2.57V	2.47	2.57	2.72	
voltage			(Note 8-1)	2.87V	2.77	2.87	3.02	
Detction voltage unknown state	POUKS		• See Fig 10. (Note 8-2)			0.7	0.95	V
Power supply rise time	PORIS		• Power supply rise time from 0V to 1.6V.				100	ms

■ Power-on Reset (POR) Characteristics at Ta=-40 to +85°C, V_{SS}1=V_{SS}2=V_{SS}3=V_{SS}4=0V

Note8-1 : The POR release level can be selected out of 2 levels only when the LVD reset function is disabled. Note8-2 : POR is in an unknown state before transistors start operation.

■ Low Voltage Detection Reset (LVD) Characteristics

at Ta=-40 to $+85^{\circ}$ C, VSS1=VSS2=VSS3=VSS4=0V

_						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage (Note 9-1)	LVDET		 Select from option. (Note 9-2) See Fig 11. 	2.81V	2.71	2.81	2.96	V
LVD hysteresis width	LVHYS			2.81V		60		mV
Detection voltage unknown state	LVUKS		• See Fig 11. (Note 9-3)			0.7	0.95	V
Low voltage detection minimum width (Replay sensitivity)	TLVDW		• LVDET-0.5V • See Fig 12.		0.2			ms

Note9-1 : LVD reset voltage specification values do not include hysteresis voltage.

Note9-2 : LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note9-3 : LVD is in an unknown state before transistors start operation.

Power Pin Treatment Conditions 1 (VDD1, VSS1)

Connect capacitors that meet the following conditions between the $V_{DD}1$ and $V_{SS}1$ pins :

- Connect among the V_{DD}1 and V_{SS}1 pins and the capacitors C1 and C2 with the shortest possible lead wires, of the same length (L1=L1', L2=L2') wherever possible.
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should be approximately 0.1μ F or larger.
- The V_{DD1} and V_{SS1} traces must be thicker than the other traces.

■ Power Pin Treatment Conditions 2 (V_{DD}2, 3, 4 and V_{SS}2, 3, 4)

Connect capacitors that meet the following condition between the VDD2, 3, 4 and VSS2, 3, 4 pins :

- Connect among the V_{DD}2, 3, 4 and V_{SS}2, 3, 4 pins and the capacitor C3 with the shortest possible lead wires, of the same length (L3=L3') wherever possible.
- The capacitance of C3 should be approximately 0.1µF or larger.
- The V_{DD2} , 3, 4 and V_{SS2} , 3, 4 traces must be thicker than the other traces.

■ Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our Company -designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

■ Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Resonator

Nominal	Vendor Name	Percentar	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Remarks
Frequency	vendor Ivame	Resonator	C3 [pF]	C4 [pF]	Rf [Ω]	Rd2 [Ω]	Range [V]	typ [ms]	max [ms]	Kemarks
10 MHz	MURATA	CSTCE10M0G52-R0	(10)	(10)	OPEN	680	2.2 to 2.6	0.02	0.2	C1, C2 integrated type
		CSTLS10M0G53-B0	(15)	(15)	OPEN	680	2.2 to 3.6	0.02	0.2	C1, C2 integrated type

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the lower limit level of the operating voltage range (see Figure 4)

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our Company -designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Resonator

Nomir	nal	Vendor Name	Resonator		Circuit	Constan	t	Operating Voltage	Oscil Stabilizat	lation ion Time	Remarks	
Freque	ncy	vendor mame	Resolution	C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Keinarks	
32.768	kHz	EPSON TOYOCOM	MC-306	10	10	Open	330K	2.2 to 3.6	1.0	3.0	CL=7.0pF	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillator circuit is executed plus the time interval that is required for the oscillation to get stabilized after the HOLD mode is released (see Figure 4).

Note : The traces to and from the components that are involved in oscillation should be kept as short as possible as the oscillation characteristics are affected by their trace pattern.

Figure 1. CF oscillator circuit

Figure 2. XT Oscillator Circuit

Figure 3. AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

HOLD Release and Oscillation Stabilization Time

Figure 4. Oscillation Stabilization Time Timing Charts

Note :

Reset signal must be present when power supply rises.

Determine the value of C_{RES} and R_{RES} so that the reset signal is present for 10 µs after the supply voltage gets stabilized.

* Remarks: DIx and DOx denote the last bits communicated; x=0 to 32768

Figure 6. Serial I/O Waveforms

Figure 7. Pulse Input Timing Signal Waveform

Figure 8. I²C Timing

Figure 9. Recommended FILT Circuit * Take at least 50ms to oscillation to stabilize after PLL is started.

Figure 10. Waveform observed when only POR is used (LVD not used) (RESET pin : Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- <u>No stable reset will be generated if power is turned on again when the power level does not go</u> <u>down to the V_{SS} level as shown in (a). If such a case is anticipated, use the LVD function</u> <u>together with the POR function or implement an external reset circuit.</u>
- <u>A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.</u>

Figure 11. Waveform observed when both POR and LVD functions are used (RESET pin : Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- <u>A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.</u>

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC88FC3H0AUTJ-2H	TQFP 100, 14x14 (Pb-Free / Halogen Free)	900 / Tray JEDEC

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product cauge a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.