

LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier

General Description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of \pm 12V. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20W.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The LH0061 is guaranteed over the temperature range -55°C to $+125^\circ\text{C}$; whereas, the LH0061C is guaranteed from -25°C to $+85^\circ\text{C}$.

Features Output current

- Wide large signal bandwidth
- High slew rate
- Low standby power
- Low input current

0.5A 1 MHz 70V/µs

240 mW

300 nA Max

LH0061/LH0061C

Absolute Maximum Ratings

Input Voltage (Note 3)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5) Supply Voltage ±18V Power Dissipation See Curve Differential Input Current (Note 2) ±10 mA

Peak Output Current	2A				
Output Short Circuit Duration (Note 4)	Continuous				
Operating Temperature Range					
LH0061	-55°C to +125°C				
LH0061C	-25°C to +85°C				
Storage Temperature Range	-65°C to +150°C				
Lead Temperature (Soldering, 10 sec.)	260°C				
ESD rating to be determined.					

DC Electrical Characteristics (Note 1)

Parameter			Limits					
	Conditions	LH0061			LH0061C			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$ \begin{split} &R_S \leq 10 \: k\Omega, \: T_C = 25^\circ C, \: V_S = \: \pm \: 15V \\ &R_S \leq \: 10 \: k\Omega, \: V_S = \: \pm \: 15V \end{split} $		1.0	4.0 6.0		3.0	10 15	m∨ mV
Voltage Drift with Temperature	$R_S \le 10 k\Omega$		5			5		μV/⁰C
Offset Voltage Change with Output Power			5			5		μV/watt
Input Offset Current	$T_{\rm C} = 25^{\circ}{\rm C}$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			1			1	_	nA/°C
Input Bias Current	$T_{C} = 25^{\circ}C$		100	300 1.0		200	500 1.0	nA μA
Input Resistance	$T_{C} = 25^{\circ}C$	0.3	1.0		0.3	1.0		MΩ
Input Capacitance			3			3		рF
Common Mode Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, \Delta V_{CM} = \pm 10 \text{ V}$	70	90		60	80		dB
Input Voltage Range	$V_{S} = \pm 15V$	±11			±11			v
Power Supply Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, \Delta V_{S} = \pm 10 \text{ V}$	70	80		50	70		dB
Voltage Gain	$ \begin{array}{l} V_S = \pm 15 V, V_O = \pm 10 V \\ R_L = 1 \ k\Omega, \ T_C = 25^\circ C \\ V_S = \pm 15 V, \ V_O = \pm 10 V \\ R_L = 20 \Omega \end{array} $	50 5	100		25 2.5	50		V/mV V/mV
Output Voltage Swing	$V_{\rm S} = \pm 15 V, R_{\rm L} = 20 \Omega$	±10	±12		±10	±12		v
Output Short Circuit Current	$V_{\rm S} = \pm 15V, T_{\rm C} = 25^{\circ}{\rm C}, R_{\rm SC} = 1.0\Omega$		600			600		mA
Power Supply Current	$V_{S} = \pm 15V, V_{OUT} = 0$		7	10		10	15	mA
Power Consumption	$V_{\rm S} = \pm 15V, V_{\rm OUT} = 0$		210	300		300	450	mW

±15V

LH0061/LH0061C

AC Electrical Characteristics ($T_C = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000 \text{ pF}$)

Parameter		Limits						
	Conditions	LH0061			LH0061C			Units
		Min	Тур	Max	Min	Тур	Max	
Slew Rate	$A_V = +1, R_L = 100\Omega$	25	70		25	70		V/µs
Power Bandwidth	$R_L = 100\Omega$		1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\Delta V_{\rm IN} = 10V, A_{\rm V} = +1$		0.8			0.8		μs
Overload Recovery Time			1			1		μs
Harmonic Distortion	$f = 1 \text{ kHz}, P_0 = 0.5 \text{W}$		0.2			0.2		%

Note 1: Specifications apply for $\pm 5V \le V_S \le \pm 18V$, $C_C = 3000 \text{ pF}$, and $-55^\circ\text{C} \le T_C \le \pm 125^\circ\text{C}$ for the LH0061K and $-25^\circ\text{C} \le T_C \le \pm 85^\circ\text{C}$ for the LH0061CK. Typical values are for $T_C = 25^\circ\text{C}$.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Rating applies as long as package power rating is not exceeded.

Note 5: Refer to RETS0061K for LH0061K military specifications.

Typical Performance Characteristics

Typical Applications

