

Operational Amplifiers

LH101 operational amplifier general description

The LH101 is a general-purpose operational amplifier which is internally compensated for unity-gain feedback. The device combines a LM101 operational amplifier and the 30 pF compensation capacitor in a single package. As such, it is a direct, plug-in replacement for both the LM101 and the LM709 in the majority of applications. Features of the amplifier include:

- Operation guaranteed for supply voltages from ±5V to ±20V
- Low current drain even with the output saturated

- No latch-up when common-mode range is exceeded
- Continuous short-circuit protection
- Input transistors protected from excessive input voltage.

The LH101 is available in either an 8-lead, low-profile TO-5 header or a $1/4'' \times 1/4''$ metal flat package.

Metal Can

Flat Pack

Low Drift Thermocouple Amplifier[‡]

Integrator with Bias Current Compensation

LH101

LH101

absolute maximum ratings

Supply Voltage	±22∨
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	±30V
Input Voltage (Note 2)	±15V
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	–55°C to +125°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10k\Omega$		1.0	5.0	mV
Input Offset Current	T _A = 25°C		40	200	nA
Input Bias Current	T _A = 25°C		120	500	nA
Input Resistance	$T_A = 25^{\circ}C$	300	800		kΩ
Supply Current	T _A = 25°C, V _S = ±20V		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	50	160		V/mV
Input Offset Voltage	$R_{s} \leq 10 k\Omega$		•	6.0	mV
Average Temperature	$R_s \leq 50 \Omega$		3.0		μV/°C
Coefficient of Input Offset Voltage	$R_{s} \le 10 k\Omega$		6.0		μV/°C
Input Offset Current	T _A = +125°C T _A = -55°C		10 100	200 500	nA nA
Input Bias Current	T _A = -55°C		0.28	1.5	μΑ
Supply Current	T _A = +125°C, V _S = ±20V		1.2	2.5	mA
Large Signal Voltage Gain	V _S = ±15V, V _{OUT} = ±10V R _L ≥2kΩ	25			V/mV
Output Voltage Swing	V_{S} = ±15V, R _L = 10k Ω R _L = 2k Ω	±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±15V	±12			v
Common Mode Rejection Ratio	$R_s \le 10 k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_s \le 10 k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve). Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal

to the supply voltage. Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ}$ C and ambient temperatures to $+70^{\circ}$ C.

Note 4: These specifications apply for -55°C \leq T_A \leq 125°C, ±5V, \leq V_S \leq ±20V and C1 = 30 pF unless otherwise specified.

LH101

