PRELIMINARY

National Semiconductor Corporation

LH4002 Wideband Video Buffer

General Description

The LH4002 is a high speed voltage follower designed to drive video signals from DC up to 200 MHz. At voltage supplies of \pm 5V, the LH4002 will provide up to 40 mA into 50 Ω at slew rates in excess of 1000 V/µs.

The device is intended to fulfill a wide range of high speed applications including video distribution, impedance transformation, and load isolation. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased.

Features

- \blacksquare DC to 200 MHz Bandwidth with V_S = $\pm 5V$
- 1250 V/μs Slew Rate into 50Ω
- 150 MHz Bandwidth with V_S = $\pm 5V$, R_L = 50 Ω and Voltage Swing = 2 V_{P-P}

Applications

- Wideband Buffer Amplifiers
- Wideband Line Driver

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, VS	±6V
Input Voltage Range, V _{IN}	±Vs
Continuous Output Current, IO	± 60 mA
Storage Temperature Range, T _{STG}	-65°C to +150°C

Operating Temperature Range, T _A	
LH4002	-55°C to +125°C
LH4002C	-25°C to +85°C
Maximum Junction Temperature, TJ	150°C
Lead Temperature (Soldering, 10 sec)	300°C
ESD rating is to be determined.	

DC Electrical Characteristics $v_{CC} = \pm 5V$, $T_{min} \le T_A \le T_{max}$ unless otherwise stated.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{OS}	Input Offset Voltage	$T_{A} = T_{J} = 25^{\circ}C$ $R_{S} = 150\Omega, R_{L} = 50\Omega$			20	50	mV
1 _B	Input Bias Current	$R_{S} = 1 k\Omega, R_{L} = 50\Omega$			100	200	μΑ
Av	DC Voltage Gain	$R_{S} = 10 \text{ k}\Omega, R_{L} = 1.0 \text{ k}\Omega, V_{IN} = \pm 2V$		0.95	0.97		V/V
vo	Output Voltage Swing	$R_S = 150\Omega, V_{IN} = \pm 2.5V$	$R_{L} = 1 k\Omega$	±2.2	±2.4		v
			$T_A = 25^{\circ}C, R_L = 50\Omega$	±2.0	±2.2		v
IS	Supply Current	$R_{S} = 10 \text{ k}\Omega, V_{IN} = 0V, R_{L} = 1 \text{ k}\Omega, T_{A} = T_{J} = 25^{\circ}\text{C}$			20	35	mA
ROUT	Output Resistance	$R_{S} = 10 k\Omega, R_{L} = 50\Omega$			6	10	Ω
P _{IN}	Input Resistance	$R_{S} = 10 \text{ k}\Omega, R_{L} = 50\Omega$		10	18		kΩ

AC Electrical Characteristics $v_{CC} = \pm 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
S _R	Slew Rate	R _L = 50Ω, R _S V _{IN} ≈ ±2V	1000	1250		V/µs	
	Bandwidth, -3 dB	$R_{S} = 50\Omega$	$V_{OUT} = 4V_{P-P}$		125		MHz
f _{3dB}		$R_L = 50\Omega$	V _{OUT} = 2V _{P-P}	100	150		MHz
		(Note 2)	$V_{OUT} = 100 \text{ mV}_{P-P}$		200		MHz
	Phase Non-Linearity	BW = 1.0-20	MHz		2.0		degrees
t _r	Rise Time	$\Delta V_{\rm IN} = 0.5 V$			3		ns
ta	Propagation Delay	$\Delta V_{IN} = 0.5 V$			1.2		ns
THD	Harmonic Distortion	f = 1 kHz			0.1		%

Note 1: Under normal operating conditions $+ V_{CC1}$ and $+ V_{CC2}$ should be connected together, and $- V_{CC1}$ and $- V_{CC2}$ should be connected together. Note 2: Guaranteed by design. This parameter is sample tested.

LH4002

Typical Applications

FIGURE 1. Wideband Unity Gain Amplifier Using LH4002CN

TL/K/8686-10

FIGURE 2. Compensation for Capacitive Loads

Applications Information

The high speed performance of the LH4002 can only be realized by taking certain precautions in circuit layout and power supply decoupling. Low inductance ceramic chip or disc power supply decoupling capacitors of 0.01 μ F in parallel with 0.1 μ F should be connected with the shortest practical lead length between device supply leads and a ground plane. Failure to follow these rules can result in oscillations.

When driving a capacitive load such as inputs to flash converters, the circuits in *Figure 2* and 3 can be used to minimize the amount of overshoot and ringing at the outputs. *Figure 2* indicates that a 50Ω should be placed in parallel with the load and *Figure 3* recommends that a 100Ω resistor be placed in series with the input to the LH4002.

Schematic Diagram

TL/K/8686-14