National Semiconductor

LH4141C 0.2 Amp Power Operational Amplifier

General Description

The LH4141C is a general purpose operational amplifier capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH4141C delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

The LH4141C is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.

Features

Output current	0.2 Amp
 Output voltage swing 	±14V into 100Ω
Wide full power bandwidth	15 kHz
Low standby power	100 mW at ±15V
Low input offset voltage	
and current	1 mV and 20 nA
High slew rate	3.0 V/μs
High open loop gain	100 dB

Applications

- Yoke driver
- Programmable power supplies
- Cable driver
- Servo amplifier

Schematic and Connection Diagrams

TL/K/10009-1

*R_{SC} is an external short circuit current limiting resistor.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	± 18V
Power Dissipation	See Curves
Differential Input Voltage	±30V
Input Voltage (Note 1)	±15V

Peak Output Current (Note 2) 0.5 Amp **Output Short Circuit Duration** (Note 3) Continuous -25°C to +85°C Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec.)

-65°C to +150°C 300°C

DC Electrical Characteristics (Notes 4 & 5)

Paramator	Conditions	Limits			Línito
Falalletei		Min	Тур	Max	Units
Input Offset Voltage	$\begin{array}{l} R_S \leq 100\Omega, T_A = 25^\circC \\ R_S \leq 100\Omega \end{array}$		3.0	6.0 7.5	mV mV
Voltage Drift with Temperature	R _S ≤ 100Ω		5		μV/°C
Offset Voltage Drift with Time			. 5		: μV/Week
Offset Voltage Change with Output Power			15		μV/W
Offset Voltage Adjustment Range			20		m∨
Input Offset Current	$T_A = 25^{\circ}C$		50	200 500	nA nA
Offset Current Drift with Temperature			0.2	1.0	nA/°C
Offset Current Drift with Time		÷	2		nA/Week
Input Bias Current	$T_A = 25^{\circ}C$		200	500 1.0	nA μA
Input Resistance	$T_A = 25^{\circ}C$	0.3	1.0		MΩ
Input Capacitance			3		pF
Common Mode Rejection Ratio	$R_{S} \le 100\Omega, \Delta V_{CM} = \pm 10V$	70	90		dB
Input Voltage Range	$V_{S} = \pm 15V$	±12			v
Power Supply Rejection Ratio	$R_{S} \le 100\Omega, \Delta V_{S} = \pm 10V$	70	90		dB
Voltage Gain	$\begin{split} V_S &= \pm 15V, V_O = \pm 10V \\ R_L &= 1 \ k\Omega, T_A = 25^\circ C \\ V_S &= \pm 15V, V_O = \pm 10V \\ R_L &= 100\Omega \end{split}$	100 20	200	Ŷ	V/mV V/mV
Output Voltage Swing	$V_{S} = \pm 15V, R_{L} = 100\Omega$	± 13.0	±14.0		v
Output Short Circuit Current	$V_S = \pm 15V, T_A = 25^{\circ}C$ (Note 6)		200	300	mA
Power Supply Current	$V_{S} = \pm 15V, V_{OUT} = 0V$		3.0	4.0	mA
Power Consumption	$V_{S} = \pm 15V, V_{OUT} = 0V$		90	120	mW

AC Electrical Characteristics (Note 7), T_A = 25°C, V_S = ±15V, C_C = 3000 pF

Parameter	Conditions	Limits			Linite	
		Min	Тур	Max	0	
Slew Rate	$A_{V} = +1, R_{L} = 100\Omega$	1.0	3.0		V/µs	
Power Bandwidth	$R_{L} = 100\Omega$		20		kHz	
Small Signal Transient Response			0.3	1.5	μs	
Small Signal Overshoot			10	30	%	
Settling Time (0.1%)	$\Delta V_{\rm IN} = 10V, A_{\rm V} = +1$		4		μs	
Overload Recovery Time			3		μs	
Harmonic Distortion	$f = 1 \text{ kHz}, P_0 = 0.5 \text{W}$		0.2		%	
Input Noise Voltage	$R_S = 50\Omega$, B.W. = 10 Hz to 10 kHz		5		μV(rms)	
Input Noise Current	B.W. = 10 Hz to 10 kHz		0.05		nA(rms)	

Note 1: Rating applies for supply voltages above ±15V. For supplies less than ±15V, rating is equal to supply voltage.

Note 2: Rating applies for $R_{SC} = 0\Omega$.

Note 3: Rating applies as long as package power dissipation rating is not exceeded.

Note 4: Specifications apply for \pm 5V \leq V_S \leq \pm 18V, and $-25^{\circ}C \leq$ T_C \leq +85°C unless otherwise specified. Typical values are for 25°C only.

Note 5: LH4141C is 100% production tested at 25°C only, specifications at temperature extremes are verified by sample testing but these limits are not used to calculate outgoing quality level.

Note 6: Rating applies for $R_{SC}\,=\,3.3\Omega.$

Note 7: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

Typical Applications (Continued)

Programmable High Current Source/Sink

Unity Gain Circuit with Short Circuit Limiting

TL/K/10009-9

Power Comparator

Offset Voltage Null Circuit*

TL/K/10009-10

