

Operational Amplifiers

LM102 voltage follower general description

The LM102 is a high-gain operational amplifier designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the device incorporates advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

- Fast slewing 10V/μs
- Low input current 10 nA (max)

- High input resistance 10,000 MΩ
- No external frequency compensation required
- Simple offset balancing with optional 1K potentiometer
- Plug-in replacement for both the LM101 and LM709 in voltage follower applications.

The LM102, which is designed to operate with supply voltages between $\pm 12V$ and $\pm 15V$, also features low input capacitance as well as excellent small signal and large signal frequency response — all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

67

LM102

absolute maximum ratings

Supply Voltage	±18V
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	±15V
Output Short-Circuit	
Duration (Note 3)	Indefinite
Operating Temperature Range	–55°C to 125°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature	
(soldering, 10 sec)	300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Offset Voltage			2	5	mV
Average Temperature Coefficient of Offset Voltage			6		μV/°C
Input Current			3	10	nA
Input Resistance		10 ¹⁰	10 ¹²		Ω
Voltage Gain	$R_L \ge 10 \ k\Omega$	0.999	0.9996		
Output Resistance			0.8	2.5	Ω
Output Voltage Swing (Note 5)	$R_L \ge 8 k\Omega$	±10	±13		v
Supply Current			3.5	5.5	mA
Positive Supply Rejection		60			dB
Negative Supply Rejection		70			dB
Input Capacitance				3.0	pF
Offset Voltage	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$			7.5	mV
Input Current	T _A = 125°C T _A = –55°C		3 30	10 100	nA nA
Voltage Gain	-55 [°] C ≤ T _A ≤ 125 [°] C R _L ≥ 10 kΩ	0.999			
Output Voltage Swing (Note 5)	$R_L \ge 10 \ k\Omega$	±10			v
Supply Current	Τ _Α = 125°C		2.6	4.0	mA

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient (see curve).

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 125° C and ambient temperatures to 70° C. It is necessary to insert a resistor greater than 2 k Ω in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for T_A = 25°C, V_S = ±15V and $C_L \leq$ 100 pF unless otherwise noted Note 5: Increased output swing under load can be obtained by connecting an external

resistor between the booster and V⁻ terminals.See curve.

guaranteed performance

Input Current

typical performance

Voltage Gain

Output Resistance

Positive Output Swing

Large Signal Frequency Response

 $V_{s} = \pm 15V$

DISTORTION

100K

FREQUENCY (Hz)

14

12

10

2 0 10K

OUTPUT SWING (±V)

Negative Output Swing

Large Signal Pulse Response

Maximum Power Dissipation

Output Swing