

National Semiconductor Corporation

LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.

The unit can operate from a total supply voltage as low as 1.1V or as high as 40V, drawing only 270μ A. A complementary output stage swings within 15 mV of the supply terminals or will deliver ± 20 mA output current with ± 0.4 V saturation. Reference output can be as low as 200 mV. Some other characteristics of the LM10 are

2.0 mV (max)
0.7 nA (max)
20 nA (max)
0.1% (max)
2µV/°C
0.002%/°C

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.

This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Connection and Functional Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7)

	LM10/LM10B/LM10C	LM10BL/LM10CL
l otal Supply Voltage	45V	7V
Differential Input Voltage (note 1)	±40V	±7V
Power Dissipation (note 2)	internally	limited
Output Short-circuit Duration (note 3)	indefir	nite
Storage-Temp. Range	-55°C to -	+ 150°C
Lead Temp. (Soldering, 10 seconds) Metal Can	300%	с
Lead Temp. (Soldering, 10 seconds) DIP Vapor Phase (60 seconds) Infrared (15 seconds)	260° 215° 220°	с с с
See AN-450 "Surface Mounting Methods on Product Reliability" (Appendix D) for soldering surface mount devices.	and Their Effect other methods of	
ESD rating is to be determined.		

Electrical Characteristics

 $T_J = 25^{\circ}C$, $T_{MIN} \le T_J \le T_{MAX}$ (note 4) (Boldface type refers to limits over temperature range)

Parameter	Conditions	LM10/LM10B				Unite		
- arameter		Min	Тур	Max	Min	Тур	Max	onits
Input offset voltage			0.3	2.0 3.0		0.5	4.0 5.0	mV mV
Input offset current (note 5)			0.25	0.7 1.5		0.4	2.0 3.0	nA nA
Input bias current			10	20 30		12	30 40	nA nA
Input resistance		250 150	500		150 1 1 5	400		kΩ kΩ
Large signal voltage gain	$ \begin{array}{l} V_{S} = \pm 20 V, \ I_{OUT} = 0 \\ V_{OUT} = \pm 19.95 V \\ V_{S} = \pm 20 V, \ V_{OUT} = \pm 19.4 V \\ I_{OUT} = \pm 20 \ \text{mA} \ (\pm 15 \ \text{mA}) \\ V_{S} = \pm 0.6 V \ (0.65 V), \ I_{OUT} = \pm 2 \ \text{mA} \\ V_{OUT} = \pm 0.4 V \ (\pm 0.3 V), \ V_{CM} = -0.4 V \end{array} $	120 80 50 20 1.5 0.5	400 130 3.0		80 50 25 15 1.0 0.75	400 130 3.0		V/mV V/mV V/mV V/mV V/mV V/mV
Shunt gain (note 6)	$\begin{array}{l} 1.2V \left(1.3V \right) \leq V_{OUT} \leq 40V, \\ R_L = 1.1 \ k\Omega \\ 0.1 \ mA \leq I_{OUT} \leq 5 \ mA \\ 1.5V \leq V^+ \leq 40V, \ R_L = 250\Omega \\ 0.1 \ mA \leq I_{OUT} \leq 20 \ mA \end{array}$	14 6 8 4	33 25		10 6 6 4	33 25		V/mV V/mV V/mV V/mV
Common-mode rejection	$-20V \le V_{CM} \le 19.15V$ (19V) $V_{S} = \pm 20V$	93 87	102		90 87	102		dB dB
Supply-voltage rejection	$-0.2V \ge V^{-} \ge -39V$ $V^{+} = 1.0V (1.1V)$ $1.0V (1.1V) \le V^{+} \le 39.8V$ $V^{-} = -0.2V$	90 84 96 90	96 106		87 84 93 90	96 106		dB dB dB dB
Offset voltage drift			2.0			5.0		μV/°C
Offset current drift			2.0			5.0		pA/°C
Bias current drift	T _C <100°C		60			90		pA/°C

Electrical Characteristics $T_J = 25^{\circ}C$, $T_{MIN} \le T_J \le T_{MAX}$, (note 4) (Boldface type refers to limits over temperature range) (Continued)

Parameter	Conditions		.M10/LM	10B		Unite		
		Min	Тур	Max	Min	Тур	Max	Units
Line regulation	$1.2V (1.3V) \le V_S \le 40V$ $0 \le I_{REF} \le 1.0 \text{ mA}, V_{REF} = 200 \text{ mV}$		0.001	0.003 0.006		0.001	0.008 0.01	%/V %/V
Load regulation	0≤I _{REF} ≤1.0 mA V ⁺ - V _{REF} ≥1.0V (1.1V)		0.01	0.1 0.15		0.01	0.15 0.2	% %
Amplifier gain	0.2V≤V _{REF} ≤35V	50 23	75		25 15	70		V/mV V/mV
Feedback sense voltage		195 194	200	205 206	190 189	200	210 211	mV mV
Feedback current			20	50 65		22	75 90	nA nA
Reference drift			0.002			0.003		%/°C
Supply current			270	400 500		300	500 570	μΑ μΑ
Supply current change	1.2V (1.3V)≤V _S ≤40V		15	75		15	75	μΑ

Parameter	Conditions		LM10BL		LM10CL			Unite
ranameter		Min	Тур	Max	Min	Тур	Max	
Input offset voltage			0.3	2.0 3.0		0.5	4.0 5.0	mV mV
Input offset current (note 5)			0.1	0.7 1.5		0.2	2.0 3.0	nA nA
Input bias current			10	20 30		12	30 40	nA nA
Input resistance		250 150	500		150 115	400		kΩ kΩ
Large signal voltage gain	$ \begin{array}{l} V_S = \pm 3.25 V, I_{OUT} = 0 \\ V_{OUT} = \pm 3.2 V \\ V_S = \pm 3.25 V, I_{OUT} = 10 \text{ mA} \\ V_{OUT} = \pm 2.75 \text{ V} \\ V_S = \pm 0.6 V \mbox{ (0.65V), } I_{OUT} = \pm 2 \text{ mA} \\ V_{OUT} = \pm 0.4 V \mbox{ (\pm 0.3V), } V_{CM} = -0.4 V \end{array} $	60 40 10 4 1.5 0.5	300 25 3.0		40 25 5 3 1.0 0.75	300 25 3.0		V/mV V/mV V/mV V/mV V/mV V/mV
Shunt gain (note 6)	$1.5V \le V^+ \le 6.5V$, R _L = 500 Ω 0.1 mA $\le I_{OUT} \le 10$ mA	8 4	30		6 4	30		V/mV V/mV
Common-mode rejection	−3.25V≤V _{CM} ≤2.4V (2.25V) V _S =±3.25V	89 83	102		80 74	102		dB dB
Supply-voltage rejection	$-0.2V \ge V^{} \ge -5.4V$ V ⁺ = 1.0V (1.2V) 1.0V (1.1V) $\le V^+ \le 6.3V$ V ⁻ = 0.2V	86 80 94 88	96 106		80 74 80 74	96 106		dB dB dB dB
Offset voltage drift			2.0			5.0		μV/°C
Offset current drift			2.0			5.0		pA/°C
Bias current drift			60			90		pA/°C

Electrical Characteristics

 $T_J = 25^{\circ}C$, $T_{MIN} \le T_J \le T_{MAX}$, (note 4) (Boldface type refers to limits over temperature range)

Parameter	Conditions		LM10BL			Unite		
		Min	Тур	Max	Min	Тур	Max	
Line regulation	1.2V (1.3V) ≤V _S ≤6.5V 0≤I _{REF} ≤0.5 mA, V _{REF} =200 mV		0.001	0.01 0.02		0.001	0.02 0.03	%/V %/V
Load regulation	0≤I _{REF} ≤0.5 mA V+ −V _{REF} ≥1.0V (1.1V)		0.01	0.1 0.15		0.01	0.15 0.2	% %
Amplifier gain	0.2V≤V _{REF} ≤5.5V	30 20	70		20 15	70		V/mV V/mV
Feedback sense voltage		195 194	200	205 206	190 189	200	210 211	mV mV
Feedback current			20	50 65		22	75 90	nA nA
Reference drift			0.002			0.003		%/°C
Supply current			260	400 500		280	500 570	μΑ μΑ

Note 1: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when V_{IN}<V⁻.

Note 2: The maximum, operating-junction temperature is 150°C for the LM10, 100°C for the LM10B(L) and 85°C for the LM10C(L). At elevated temperatures, devices must be derated based on package thermal resistance.

Note 3: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.

Note 4: These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85V$ (1.0V), 1.2V (1.3V) $< V_S \le V_{MAX}$. $V_{REF} = 0.2V$ and $0 \le I_{REF} \le 1.0$ mA, unless otherwise specified: $V_{MAX} = 40V$ for the standard part and 6.5V for the low voltage part. Normal typeface indicates 25°C limits. Boldface type indicates limits and altered test conditions for full-temperature-range operation; this is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 \cong 20$ ms), die heating ($\tau_2 \equiv 0.25$) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).

Note 5: For T_J>90°C, I_{OS} may exceed 1.5 nA for $V_{CM} = V^-$. With T_J = 125°C and $V^- \le V_{CM} \le V^- + 0.1V$, I_{OS} ≤ 5 nA.

Note 6: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V⁺ terminal of the IC and input common mode is referred to V⁻ (see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Note 7: Refer to RETS10X for LM10H military specifications.

Typical Performance Characteristics (Op Amp) (Continued)

TL/H/5652-4

Typical Performance Characteristics (Reference)

TL/H/5652-5

Typical Applications^{††} (Pin numbers are for devices in 8-pin packages)

Op Amp Offset Adjustment

Limited Range

Limited Range With Boosted

Positive Regulators[†]

Low Voltage

Best Regulation

Zero Output

TL/H/5652-6

[†]Use only electrolytic output capacitors.

^{††}Circuit descriptions available in application note AN-211.

Typical Applications^{††} (Pin numbers are for devices in 8-pin packages) (Continued)

Current Regulator

Shunt Regulator

*Required For Capacitive Loading

Negative Regulator

TL/H/5652-7

Precision Regulator

Laboratory Power Supply

††Circuit descriptions available in application note AN-211.

LM10/LM10B(L)/LM10C(L)

2-251

Typical Applications ^{††} (Pin numbers are for devices in 8-pin packages) (Continued)

LM10/LM10B(L)/LM10C(L)

^{††}Circuit descriptions available in application note AN-211.

Application Hints

With heavy amplifier loading to V⁻, resistance drops in the V⁻ lead can adversely affect reference regulation. Lead resistance can approach 1Ω . Therefore, the common to the reference circuitry should be connected as close as possible to the package.

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V⁺ terminal of the IC. The load and power source are connected between the V⁺ and V⁻ terminals, and input common-mode is referred to the V⁻ terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to V⁻, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.